In [10]:
import plotly.plotly as py
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
In [11]:
init_notebook_mode(connected=True)
In [14]:
import pandas as pd
In [15]:
d = dict(type = 'choropleth',
locations = ['AZ','CA','NY'],
locationmode = 'USA-states',
colorscale= 'Portland',
text= ['text1','text2','text3'],
z=[1.0,2.0,3.0],
colorbar = {'title':'my titile'})
l = dict(geo = {'scope':'usa'})
In [16]:
choromap = go.Figure(data = [d],layout = l)
iplot(choromap)
In [5]:
df = pd.read_csv('2011_US_AGRI_Exports')
df.head()
Out[5]:
In [18]:
data = dict(type='choropleth',
colorscale = 'YIOrRd',
locations = df['code'],
z = df['total exports'],
locationmode = 'USA-states',
text = df['text'],
marker = dict(line = dict(color = 'rgb(255,255,255)',width = 2)),
colorbar = {'title':"Millions USD"}
)
In [22]:
layout = dict(title = '2011 US Agriculture Exports by State',
geo = dict(scope='usa',
showlakes = True,
lakecolor = 'rgb(85,173,240)')
)
In [23]:
choromap = go.Figure(data = [data],layout = layout)
In [24]:
iplot(choromap)
No comments:
Post a Comment