jointplot¶
jointplot() allows you to basically match up two distplots for bivariate data. With your choice of what kind parameter to compare with:
- “scatter”
- “reg”
- “resid”
- “kde”
- “hex”
In [10]:
import seaborn as sns
%matplotlib inline
tips = sns.load_dataset('tips')
tips.head(1)
Out[10]:
In [11]:
sns.jointplot(x='total_bill',y='tip',data=tips)
Out[11]:
In [12]:
sns.jointplot(x='total_bill',y='tip',data=tips,kind='scatter')
Out[12]:
In [13]:
sns.jointplot(x='total_bill',y='tip',data=tips,kind='hex')
Out[13]:
In [14]:
sns.jointplot(x='total_bill',y='tip',data=tips,kind='reg')
Out[14]:
In [15]:
sns.jointplot(x='total_bill',y='tip',data=tips,kind='kde')
Out[15]:
In [16]:
sns.jointplot(x='total_bill',y='tip',data=tips,kind='resid')
Out[16]:
In [ ]:
sns.jointplot(x='total_bill',y='tip',data=tips)
In [17]:
tips.head(1)
Out[17]:
In [21]:
sns.jointplot(x='size',y='total_bill',data=tips,kind="reg")
Out[21]:
No comments:
Post a Comment