/ Python And R Data science skills: 99 Real Data US Map Choropleth(1)
Showing posts with label 99 Real Data US Map Choropleth(1). Show all posts
Showing posts with label 99 Real Data US Map Choropleth(1). Show all posts

Sunday, 18 February 2018

99 Real Data US Map Choropleth(1)

99 Real Data US Map Choropleth
In [10]:
import plotly.plotly as py
import plotly.graph_objs as go 
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
In [11]:
init_notebook_mode(connected=True) 
In [14]:
import pandas as pd
In [15]:
d = dict(type = 'choropleth',
            locations = ['AZ','CA','NY'],
            locationmode = 'USA-states',
            colorscale= 'Portland',
            text= ['text1','text2','text3'],
            z=[1.0,2.0,3.0],
            colorbar = {'title':'my titile'})
l = dict(geo = {'scope':'usa'})
In [16]:
choromap = go.Figure(data = [d],layout = l)
iplot(choromap)
In [5]:
df = pd.read_csv('2011_US_AGRI_Exports')
df.head()
Out[5]:
code state category total exports beef pork poultry dairy fruits fresh fruits proc total fruits veggies fresh veggies proc total veggies corn wheat cotton text
0 AL Alabama state 1390.63 34.4 10.6 481.0 4.06 8.0 17.1 25.11 5.5 8.9 14.33 34.9 70.0 317.61 Alabama<br>Beef 34.4 Dairy 4.06<br>Fruits 25.1...
1 AK Alaska state 13.31 0.2 0.1 0.0 0.19 0.0 0.0 0.00 0.6 1.0 1.56 0.0 0.0 0.00 Alaska<br>Beef 0.2 Dairy 0.19<br>Fruits 0.0 Ve...
2 AZ Arizona state 1463.17 71.3 17.9 0.0 105.48 19.3 41.0 60.27 147.5 239.4 386.91 7.3 48.7 423.95 Arizona<br>Beef 71.3 Dairy 105.48<br>Fruits 60...
3 AR Arkansas state 3586.02 53.2 29.4 562.9 3.53 2.2 4.7 6.88 4.4 7.1 11.45 69.5 114.5 665.44 Arkansas<br>Beef 53.2 Dairy 3.53<br>Fruits 6.8...
4 CA California state 16472.88 228.7 11.1 225.4 929.95 2791.8 5944.6 8736.40 803.2 1303.5 2106.79 34.6 249.3 1064.95 California<br>Beef 228.7 Dairy 929.95<br>Frui...
In [18]:
data = dict(type='choropleth',
            colorscale = 'YIOrRd',
            locations = df['code'],
            z = df['total exports'],
            locationmode = 'USA-states',
            text = df['text'],
            marker = dict(line = dict(color = 'rgb(255,255,255)',width = 2)),
            colorbar = {'title':"Millions USD"}
            ) 
In [22]:
layout = dict(title = '2011 US Agriculture Exports by State',
              geo = dict(scope='usa',
                         showlakes = True,
                         lakecolor = 'rgb(85,173,240)')
             )
In [23]:
choromap = go.Figure(data = [data],layout = layout)
In [24]:
iplot(choromap)