/ Python And R Data science skills: 81 metabolite exercise part 02

Sunday, 18 February 2018

81 metabolite exercise part 02

https://vlrtraining.com/courses/python-data-science-beginner-tutorial 81 metplotlib exercise part02
In [1]:
import numpy as np
x = np.arange(0,100)
y = x*2
z = x**2
In [2]:
import matplotlib.pyplot as plt
%matplotlib inline

Exercise 3

Create the plot below by adding two axes to a figure object at [0,0,1,1] and [0.2,0.5,.4,.4]

In [3]:
 
In [8]:
fig = plt.figure()

ax = fig.add_axes([0,0,1,1])
ax2 = fig.add_axes([0.2,0.5,.4,.4])

Now use x,y, and z arrays to recreate the plot below. Notice the xlimits and y limits on the inserted plot:

In [4]:
 
Out[4]:
In [10]:
ax.plot(x,z)
ax.set_xlabel('X')
ax.set_ylabel('Z')


ax2.plot(x,y)
ax2.set_xlabel('X')
ax2.set_ylabel('Y')
ax2.set_title('zoom')
ax2.set_xlim(20,22)
ax2.set_ylim(30,50)

fig
Out[10]:

Exercise 4

Use plt.subplots(nrows=1, ncols=2) to create the plot below.

In [5]:
 
In [11]:
# Empty canvas of 1 by 2 subplots
fig, axes = plt.subplots(nrows=1, ncols=2)

Now plot (x,y) and (x,z) on the axes. Play around with the linewidth and style

In [6]:
 
Out[6]:
In [12]:
axes[0].plot(x,y,color="blue", lw=3, ls='--')
axes[1].plot(x,z,color="red", lw=3, ls='-')
fig
Out[12]:

See if you can resize the plot by adding the figsize() argument in plt.subplots() are copying and pasting your previous code.

In [7]:
 
Out[7]:
Text(0,0.5,'z')
In [ ]:
fig, axes = plt.subplots(nrows=1, ncols=2,figsize=(12,2))

axes[0].plot(x,y,color="blue", lw=5)
axes[0].set_xlabel('x')
axes[0].set_ylabel('y')

axes[1].plot(x,z,color="red", lw=3, ls='--')
axes[1].set_xlabel('x')
axes[1].set_ylabel('z')

No comments:

Post a Comment