/ Python And R Data science skills: 86 rugplot and kdeplot

Sunday, 18 February 2018

86 rugplot and kdeplot

https://vlrtraining.com/courses/python-data-science-beginner-tutorial 86 rugplot and kdeplot
In [1]:
import seaborn as sns
%matplotlib inline
tips = sns.load_dataset('tips')
tips.head(1)
Out[1]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2

rugplot

rugplots are actually a very simple concept, they just draw a dash mark for every point on a univariate distribution. They are the building block of a KDE plot:

In [2]:
sns.rugplot(tips['total_bill'])
Out[2]:
<matplotlib.axes._subplots.AxesSubplot at 0xb262128>
In [4]:
sns.distplot(tips['total_bill'])
Out[4]:
<matplotlib.axes._subplots.AxesSubplot at 0xba83438>

kdeplot

kdeplots are Kernel Density Estimation plots. These KDE plots replace every single observation with a Gaussian (Normal) distribution centered around that value. For example:

In [4]:
# Don't worry about understanding this code!
# It's just for the diagram below
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

#Create dataset
dataset = np.random.randn(25)

# Create another rugplot
sns.rugplot(dataset);

# Set up the x-axis for the plot
x_min = dataset.min() - 2
x_max = dataset.max() + 2

# 100 equally spaced points from x_min to x_max
x_axis = np.linspace(x_min,x_max,100)

# Set up the bandwidth, for info on this:
url = 'http://en.wikipedia.org/wiki/Kernel_density_estimation#Practical_estimation_of_the_bandwidth'

bandwidth = ((4*dataset.std()**5)/(3*len(dataset)))**.2


# Create an empty kernel list
kernel_list = []

# Plot each basis function
for data_point in dataset:
    
    # Create a kernel for each point and append to list
    kernel = stats.norm(data_point,bandwidth).pdf(x_axis)
    kernel_list.append(kernel)
    
    #Scale for plotting
    kernel = kernel / kernel.max()
    kernel = kernel * .4
    plt.plot(x_axis,kernel,color = 'grey',alpha=0.5)

plt.ylim(0,1)
Out[4]:
(0, 1)
In [5]:
# To get the kde plot we can sum these basis functions.

# Plot the sum of the basis function
sum_of_kde = np.sum(kernel_list,axis=0)

# Plot figure
fig = plt.plot(x_axis,sum_of_kde,color='indianred')

# Add the initial rugplot
sns.rugplot(dataset,c = 'indianred')

# Get rid of y-tick marks
plt.yticks([])

# Set title
plt.suptitle("Sum of the Basis Functions")
Out[5]:
Text(0.5,0.98,'Sum of the Basis Functions')
In [6]:
sns.kdeplot(tips['tip'])
sns.rugplot(tips['tip'])
Out[6]:
<matplotlib.axes._subplots.AxesSubplot at 0x7d323c8>
In [6]:
tips.head(1)
Out[6]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
In [7]:
sns.kdeplot(tips['total_bill'])
sns.rugplot(tips['total_bill'])
Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0xbdd15c0>
In [ ]:
++

No comments:

Post a Comment