/ Python And R Data science skills: 39 Numpy Qustions and answers in telugu part 02

Sunday, 4 February 2018

39 Numpy Qustions and answers in telugu part 02

39 nump qustion and answers
In [2]:
import numpy as np
In [3]:
 
Out[3]:
array([[ 0.01,  0.02,  0.03,  0.04,  0.05,  0.06,  0.07,  0.08,  0.09,  0.1 ],
       [ 0.11,  0.12,  0.13,  0.14,  0.15,  0.16,  0.17,  0.18,  0.19,  0.2 ],
       [ 0.21,  0.22,  0.23,  0.24,  0.25,  0.26,  0.27,  0.28,  0.29,  0.3 ],
       [ 0.31,  0.32,  0.33,  0.34,  0.35,  0.36,  0.37,  0.38,  0.39,  0.4 ],
       [ 0.41,  0.42,  0.43,  0.44,  0.45,  0.46,  0.47,  0.48,  0.49,  0.5 ],
       [ 0.51,  0.52,  0.53,  0.54,  0.55,  0.56,  0.57,  0.58,  0.59,  0.6 ],
       [ 0.61,  0.62,  0.63,  0.64,  0.65,  0.66,  0.67,  0.68,  0.69,  0.7 ],
       [ 0.71,  0.72,  0.73,  0.74,  0.75,  0.76,  0.77,  0.78,  0.79,  0.8 ],
       [ 0.81,  0.82,  0.83,  0.84,  0.85,  0.86,  0.87,  0.88,  0.89,  0.9 ],
       [ 0.91,  0.92,  0.93,  0.94,  0.95,  0.96,  0.97,  0.98,  0.99,  1.  ]])
In [7]:
 
Out[7]:
array([ 0.01,  0.02,  0.03,  0.04,  0.05,  0.06,  0.07,  0.08,  0.09,
        0.1 ,  0.11,  0.12,  0.13,  0.14,  0.15,  0.16,  0.17,  0.18,
        0.19,  0.2 ,  0.21,  0.22,  0.23,  0.24,  0.25,  0.26,  0.27,
        0.28,  0.29,  0.3 ,  0.31,  0.32,  0.33,  0.34,  0.35,  0.36,
        0.37,  0.38,  0.39,  0.4 ,  0.41,  0.42,  0.43,  0.44,  0.45,
        0.46,  0.47,  0.48,  0.49,  0.5 ,  0.51,  0.52,  0.53,  0.54,
        0.55,  0.56,  0.57,  0.58,  0.59,  0.6 ,  0.61,  0.62,  0.63,
        0.64,  0.65,  0.66,  0.67,  0.68,  0.69,  0.7 ,  0.71,  0.72,
        0.73,  0.74,  0.75,  0.76,  0.77,  0.78,  0.79,  0.8 ,  0.81,
        0.82,  0.83,  0.84,  0.85,  0.86,  0.87,  0.88,  0.89,  0.9 ,
        0.91,  0.92,  0.93,  0.94,  0.95,  0.96,  0.97,  0.98,  0.99,  1.  ])
In [12]:
np.arange(1,101).reshape(10,10)/100
Out[12]:
array([[ 0.01,  0.02,  0.03,  0.04,  0.05,  0.06,  0.07,  0.08,  0.09,  0.1 ],
       [ 0.11,  0.12,  0.13,  0.14,  0.15,  0.16,  0.17,  0.18,  0.19,  0.2 ],
       [ 0.21,  0.22,  0.23,  0.24,  0.25,  0.26,  0.27,  0.28,  0.29,  0.3 ],
       [ 0.31,  0.32,  0.33,  0.34,  0.35,  0.36,  0.37,  0.38,  0.39,  0.4 ],
       [ 0.41,  0.42,  0.43,  0.44,  0.45,  0.46,  0.47,  0.48,  0.49,  0.5 ],
       [ 0.51,  0.52,  0.53,  0.54,  0.55,  0.56,  0.57,  0.58,  0.59,  0.6 ],
       [ 0.61,  0.62,  0.63,  0.64,  0.65,  0.66,  0.67,  0.68,  0.69,  0.7 ],
       [ 0.71,  0.72,  0.73,  0.74,  0.75,  0.76,  0.77,  0.78,  0.79,  0.8 ],
       [ 0.81,  0.82,  0.83,  0.84,  0.85,  0.86,  0.87,  0.88,  0.89,  0.9 ],
       [ 0.91,  0.92,  0.93,  0.94,  0.95,  0.96,  0.97,  0.98,  0.99,  1.  ]])
In [15]:
np.linspace(0.01,1,100).reshape(10,10)
Out[15]:
array([[ 0.01,  0.02,  0.03,  0.04,  0.05,  0.06,  0.07,  0.08,  0.09,  0.1 ],
       [ 0.11,  0.12,  0.13,  0.14,  0.15,  0.16,  0.17,  0.18,  0.19,  0.2 ],
       [ 0.21,  0.22,  0.23,  0.24,  0.25,  0.26,  0.27,  0.28,  0.29,  0.3 ],
       [ 0.31,  0.32,  0.33,  0.34,  0.35,  0.36,  0.37,  0.38,  0.39,  0.4 ],
       [ 0.41,  0.42,  0.43,  0.44,  0.45,  0.46,  0.47,  0.48,  0.49,  0.5 ],
       [ 0.51,  0.52,  0.53,  0.54,  0.55,  0.56,  0.57,  0.58,  0.59,  0.6 ],
       [ 0.61,  0.62,  0.63,  0.64,  0.65,  0.66,  0.67,  0.68,  0.69,  0.7 ],
       [ 0.71,  0.72,  0.73,  0.74,  0.75,  0.76,  0.77,  0.78,  0.79,  0.8 ],
       [ 0.81,  0.82,  0.83,  0.84,  0.85,  0.86,  0.87,  0.88,  0.89,  0.9 ],
       [ 0.91,  0.92,  0.93,  0.94,  0.95,  0.96,  0.97,  0.98,  0.99,  1.  ]])
In [16]:
np.linspace(0,1,20)
Out[16]:
array([ 0.        ,  0.05263158,  0.10526316,  0.15789474,  0.21052632,
        0.26315789,  0.31578947,  0.36842105,  0.42105263,  0.47368421,
        0.52631579,  0.57894737,  0.63157895,  0.68421053,  0.73684211,
        0.78947368,  0.84210526,  0.89473684,  0.94736842,  1.        ])
In [17]:
mat = np.arange(1,26).reshape(5,5)
mat
Out[17]:
array([[ 1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10],
       [11, 12, 13, 14, 15],
       [16, 17, 18, 19, 20],
       [21, 22, 23, 24, 25]])
In [20]:
mat[2:,1:]
Out[20]:
array([[12, 13, 14, 15],
       [17, 18, 19, 20],
       [22, 23, 24, 25]])
In [21]:
mat[3,4]
Out[21]:
20
In [22]:
mat[:3]
Out[22]:
array([[ 1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10],
       [11, 12, 13, 14, 15]])
In [23]:
mat[:3,1:]
Out[23]:
array([[ 2,  3,  4,  5],
       [ 7,  8,  9, 10],
       [12, 13, 14, 15]])
In [24]:
mat[:3,1:2]
Out[24]:
array([[ 2],
       [ 7],
       [12]])
In [25]:
mat.sum()
Out[25]:
325
In [26]:
mat
Out[26]:
array([[ 1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10],
       [11, 12, 13, 14, 15],
       [16, 17, 18, 19, 20],
       [21, 22, 23, 24, 25]])
In [ ]:
mat.sum(axis=0)

No comments:

Post a Comment