/ Python And R Data science skills: 25 ds python Matrix creation

Sunday, 4 February 2018

25 ds python Matrix creation

25 Matrix in python
In [1]:
import numpy as np
In [3]:
a=[1,2,3]
b=["ram","sur","nai"]
c=["hi","plz","subcribe"]
In [4]:
a
Out[4]:
[1, 2, 3]
In [5]:
b
Out[5]:
['ram', 'sur', 'nai']
In [6]:
c
Out[6]:
['hi', 'plz', 'subcribe']
In [9]:
z=np.array([a,b,c])
In [10]:
z
Out[10]:
array([['1', '2', '3'],
       ['ram', 'sur', 'nai'],
       ['hi', 'plz', 'subcribe']],
      dtype='<U11')
In [11]:
print(z)
[['1' '2' '3']
 ['ram' 'sur' 'nai']
 ['hi' 'plz' 'subcribe']]
In [12]:
z[2,1]
Out[12]:
'plz'
In [13]:
mat1=np.array([a,b,c])
In [14]:
mat1
Out[14]:
array([['1', '2', '3'],
       ['ram', 'sur', 'nai'],
       ['hi', 'plz', 'subcribe']],
      dtype='<U11')
In [15]:
print(mat1)
[['1' '2' '3']
 ['ram' 'sur' 'nai']
 ['hi' 'plz' 'subcribe']]
In [16]:
mat1[1,1]
Out[16]:
'sur'
In [17]:
mat1[2,1]
Out[17]:
'plz'
In [18]:
mat1[1,2]
Out[18]:
'nai'
In [24]:
arra1=np.arange(1,21)
In [25]:
arra1
Out[25]:
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
       18, 19, 20])
np.
In [27]:
mat2=np.reshape(arra1,(4,5) )
In [28]:
mat2
Out[28]:
array([[ 1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10],
       [11, 12, 13, 14, 15],
       [16, 17, 18, 19, 20]])
In [29]:
mat3=np.reshape(arra1,(4,5),order="F")
In [30]:
mat3
Out[30]:
array([[ 1,  5,  9, 13, 17],
       [ 2,  6, 10, 14, 18],
       [ 3,  7, 11, 15, 19],
       [ 4,  8, 12, 16, 20]])
In [31]:
mat3[0,0]
Out[31]:
1
In [37]:
arra1.reshape(5,4,order="C")
Out[37]:
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12],
       [13, 14, 15, 16],
       [17, 18, 19, 20]])
In [38]:
mat3.min()
Out[38]:
1
In [39]:
mat1.min()
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-39-858a02ee684c> in <module>()
----> 1 mat1.min()

~\Anaconda3\lib\site-packages\numpy\core\_methods.py in _amin(a, axis, out, keepdims)
     27 
     28 def _amin(a, axis=None, out=None, keepdims=False):
---> 29     return umr_minimum(a, axis, None, out, keepdims)
     30 
     31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):

TypeError: cannot perform reduce with flexible type
In [40]:
mat1
Out[40]:
array([['1', '2', '3'],
       ['ram', 'sur', 'nai'],
       ['hi', 'plz', 'subcribe']],
      dtype='<U11')

No comments:

Post a Comment