/ Python And R Data science skills: 29 what is Numpy

Sunday, 4 February 2018

29 what is Numpy

28th Basket ball game analysis Final
In [2]:
# Matrices:
# - Salary
# - Games
# - MinutesPlayed
# - FieldGoals
# - FieldGoalAttempts
# - Points
# Lists:
# - Players
# - Seasons
# Dictionaries:
# - Sdict
# - Pdict
#We will understand these inside the course.
#

#www.superdatascience.com
#Copyright: These datasets were prepared using publicly available data.
#           However, theses scripts are subject to Copyright Laws. 
#           If you wish to use these Python scripts outside of the Python Programming Course
#           by Kirill Eremenko, you may do so by referencing  in your work.

#Comments:
#Seasons are labeled based on the first year in the season
#E.g. the 2012-2013 season is preseneted as simply 2012

#Notes and Corrections to the data:
#Kevin Durant: 2006 - College Data Used
#Kevin Durant: 2005 - Proxied With 2006 Data
#Derrick Rose: 2012 - Did Not Play
#Derrick Rose: 2007 - College Data Used
#Derrick Rose: 2006 - Proxied With 2007 Data
#Derrick Rose: 2005 - Proxied With 2007 Data

#Import numpy
import numpy as np

#Seasons
Seasons = ["2005","2006","2007","2008","2009","2010","2011","2012","2013","2014"]
Sdict = {"2005":0,"2006":1,"2007":2,"2008":3,"2009":4,"2010":5,"2011":6,"2012":7,"2013":8,"2014":9}

#Players
Players = ["KobeBryant","JoeJohnson","LeBronJames","CarmeloAnthony","DwightHoward","ChrisBosh","ChrisPaul","KevinDurant","DerrickRose","DwayneWade"]
Pdict = {"KobeBryant":0,"JoeJohnson":1,"LeBronJames":2,"CarmeloAnthony":3,"DwightHoward":4,"ChrisBosh":5,"ChrisPaul":6,"KevinDurant":7,"DerrickRose":8,"DwayneWade":9}

#Salaries
KobeBryant_Salary = [15946875,17718750,19490625,21262500,23034375,24806250,25244493,27849149,30453805,23500000]
JoeJohnson_Salary = [12000000,12744189,13488377,14232567,14976754,16324500,18038573,19752645,21466718,23180790]
LeBronJames_Salary = [4621800,5828090,13041250,14410581,15779912,14500000,16022500,17545000,19067500,20644400]
CarmeloAnthony_Salary = [3713640,4694041,13041250,14410581,15779912,17149243,18518574,19450000,22407474,22458000]
DwightHoward_Salary = [4493160,4806720,6061274,13758000,15202590,16647180,18091770,19536360,20513178,21436271]
ChrisBosh_Salary = [3348000,4235220,12455000,14410581,15779912,14500000,16022500,17545000,19067500,20644400]
ChrisPaul_Salary = [3144240,3380160,3615960,4574189,13520500,14940153,16359805,17779458,18668431,20068563]
KevinDurant_Salary = [0,0,4171200,4484040,4796880,6053663,15506632,16669630,17832627,18995624]
DerrickRose_Salary = [0,0,0,4822800,5184480,5546160,6993708,16402500,17632688,18862875]
DwayneWade_Salary = [3031920,3841443,13041250,14410581,15779912,14200000,15691000,17182000,18673000,15000000]
#Matrix
Salary = np.array([KobeBryant_Salary, JoeJohnson_Salary, LeBronJames_Salary, CarmeloAnthony_Salary, DwightHoward_Salary, ChrisBosh_Salary, ChrisPaul_Salary, KevinDurant_Salary, DerrickRose_Salary, DwayneWade_Salary])

#Games 
KobeBryant_G = [80,77,82,82,73,82,58,78,6,35]
JoeJohnson_G = [82,57,82,79,76,72,60,72,79,80]
LeBronJames_G = [79,78,75,81,76,79,62,76,77,69]
CarmeloAnthony_G = [80,65,77,66,69,77,55,67,77,40]
DwightHoward_G = [82,82,82,79,82,78,54,76,71,41]
ChrisBosh_G = [70,69,67,77,70,77,57,74,79,44]
ChrisPaul_G = [78,64,80,78,45,80,60,70,62,82]
KevinDurant_G = [35,35,80,74,82,78,66,81,81,27]
DerrickRose_G = [40,40,40,81,78,81,39,0,10,51]
DwayneWade_G = [75,51,51,79,77,76,49,69,54,62]
#Matrix
Games = np.array([KobeBryant_G, JoeJohnson_G, LeBronJames_G, CarmeloAnthony_G, DwightHoward_G, ChrisBosh_G, ChrisPaul_G, KevinDurant_G, DerrickRose_G, DwayneWade_G])

#Minutes Played
KobeBryant_MP = [3277,3140,3192,2960,2835,2779,2232,3013,177,1207]
JoeJohnson_MP = [3340,2359,3343,3124,2886,2554,2127,2642,2575,2791]
LeBronJames_MP = [3361,3190,3027,3054,2966,3063,2326,2877,2902,2493]
CarmeloAnthony_MP = [2941,2486,2806,2277,2634,2751,1876,2482,2982,1428]
DwightHoward_MP = [3021,3023,3088,2821,2843,2935,2070,2722,2396,1223]
ChrisBosh_MP = [2751,2658,2425,2928,2526,2795,2007,2454,2531,1556]
ChrisPaul_MP = [2808,2353,3006,3002,1712,2880,2181,2335,2171,2857]
KevinDurant_MP = [1255,1255,2768,2885,3239,3038,2546,3119,3122,913]
DerrickRose_MP = [1168,1168,1168,3000,2871,3026,1375,0,311,1530]
DwayneWade_MP = [2892,1931,1954,3048,2792,2823,1625,2391,1775,1971]
#Matrix
MinutesPlayed = np.array([KobeBryant_MP, JoeJohnson_MP, LeBronJames_MP, CarmeloAnthony_MP, DwightHoward_MP, ChrisBosh_MP, ChrisPaul_MP, KevinDurant_MP, DerrickRose_MP, DwayneWade_MP])

#Field Goals
KobeBryant_FG = [978,813,775,800,716,740,574,738,31,266]
JoeJohnson_FG = [632,536,647,620,635,514,423,445,462,446]
LeBronJames_FG = [875,772,794,789,768,758,621,765,767,624]
CarmeloAnthony_FG = [756,691,728,535,688,684,441,669,743,358]
DwightHoward_FG = [468,526,583,560,510,619,416,470,473,251]
ChrisBosh_FG = [549,543,507,615,600,524,393,485,492,343]
ChrisPaul_FG = [407,381,630,631,314,430,425,412,406,568]
KevinDurant_FG = [306,306,587,661,794,711,643,731,849,238]
DerrickRose_FG = [208,208,208,574,672,711,302,0,58,338]
DwayneWade_FG = [699,472,439,854,719,692,416,569,415,509]
#Matrix
FieldGoals  = np.array([KobeBryant_FG, JoeJohnson_FG, LeBronJames_FG, CarmeloAnthony_FG, DwightHoward_FG, ChrisBosh_FG, ChrisPaul_FG, KevinDurant_FG, DerrickRose_FG, DwayneWade_FG])

#Field Goal Attempts
KobeBryant_FGA = [2173,1757,1690,1712,1569,1639,1336,1595,73,713]
JoeJohnson_FGA = [1395,1139,1497,1420,1386,1161,931,1052,1018,1025]
LeBronJames_FGA = [1823,1621,1642,1613,1528,1485,1169,1354,1353,1279]
CarmeloAnthony_FGA = [1572,1453,1481,1207,1502,1503,1025,1489,1643,806]
DwightHoward_FGA = [881,873,974,979,834,1044,726,813,800,423]
ChrisBosh_FGA = [1087,1094,1027,1263,1158,1056,807,907,953,745]
ChrisPaul_FGA = [947,871,1291,1255,637,928,890,856,870,1170]
KevinDurant_FGA = [647,647,1366,1390,1668,1538,1297,1433,1688,467]
DerrickRose_FGA = [436,436,436,1208,1373,1597,695,0,164,835]
DwayneWade_FGA = [1413,962,937,1739,1511,1384,837,1093,761,1084]
#Matrix
FieldGoalAttempts = np.array([KobeBryant_FGA, JoeJohnson_FGA, LeBronJames_FGA, CarmeloAnthony_FGA, DwightHoward_FGA, ChrisBosh_FGA, ChrisPaul_FGA, KevinDurant_FGA, DerrickRose_FGA, DwayneWade_FGA])

#Points
KobeBryant_PTS = [2832,2430,2323,2201,1970,2078,1616,2133,83,782]
JoeJohnson_PTS = [1653,1426,1779,1688,1619,1312,1129,1170,1245,1154]
LeBronJames_PTS = [2478,2132,2250,2304,2258,2111,1683,2036,2089,1743]
CarmeloAnthony_PTS = [2122,1881,1978,1504,1943,1970,1245,1920,2112,966]
DwightHoward_PTS = [1292,1443,1695,1624,1503,1784,1113,1296,1297,646]
ChrisBosh_PTS = [1572,1561,1496,1746,1678,1438,1025,1232,1281,928]
ChrisPaul_PTS = [1258,1104,1684,1781,841,1268,1189,1186,1185,1564]
KevinDurant_PTS = [903,903,1624,1871,2472,2161,1850,2280,2593,686]
DerrickRose_PTS = [597,597,597,1361,1619,2026,852,0,159,904]
DwayneWade_PTS = [2040,1397,1254,2386,2045,1941,1082,1463,1028,1331]
#Matrix
Points = np.array([KobeBryant_PTS, JoeJohnson_PTS, LeBronJames_PTS, CarmeloAnthony_PTS, DwightHoward_PTS, ChrisBosh_PTS, ChrisPaul_PTS, KevinDurant_PTS, DerrickRose_PTS, DwayneWade_PTS])             
In [3]:
Salary
Out[3]:
array([[15946875, 17718750, 19490625, 21262500, 23034375, 24806250,
        25244493, 27849149, 30453805, 23500000],
       [12000000, 12744189, 13488377, 14232567, 14976754, 16324500,
        18038573, 19752645, 21466718, 23180790],
       [ 4621800,  5828090, 13041250, 14410581, 15779912, 14500000,
        16022500, 17545000, 19067500, 20644400],
       [ 3713640,  4694041, 13041250, 14410581, 15779912, 17149243,
        18518574, 19450000, 22407474, 22458000],
       [ 4493160,  4806720,  6061274, 13758000, 15202590, 16647180,
        18091770, 19536360, 20513178, 21436271],
       [ 3348000,  4235220, 12455000, 14410581, 15779912, 14500000,
        16022500, 17545000, 19067500, 20644400],
       [ 3144240,  3380160,  3615960,  4574189, 13520500, 14940153,
        16359805, 17779458, 18668431, 20068563],
       [       0,        0,  4171200,  4484040,  4796880,  6053663,
        15506632, 16669630, 17832627, 18995624],
       [       0,        0,        0,  4822800,  5184480,  5546160,
         6993708, 16402500, 17632688, 18862875],
       [ 3031920,  3841443, 13041250, 14410581, 15779912, 14200000,
        15691000, 17182000, 18673000, 15000000]])
In [4]:
Salary[Pdict['JoeJohnson']][Sdict['2007']]
Out[4]:
13488377
In [5]:
FieldGoals
Out[5]:
array([[978, 813, 775, 800, 716, 740, 574, 738,  31, 266],
       [632, 536, 647, 620, 635, 514, 423, 445, 462, 446],
       [875, 772, 794, 789, 768, 758, 621, 765, 767, 624],
       [756, 691, 728, 535, 688, 684, 441, 669, 743, 358],
       [468, 526, 583, 560, 510, 619, 416, 470, 473, 251],
       [549, 543, 507, 615, 600, 524, 393, 485, 492, 343],
       [407, 381, 630, 631, 314, 430, 425, 412, 406, 568],
       [306, 306, 587, 661, 794, 711, 643, 731, 849, 238],
       [208, 208, 208, 574, 672, 711, 302,   0,  58, 338],
       [699, 472, 439, 854, 719, 692, 416, 569, 415, 509]])
In [6]:
Games
Out[6]:
array([[80, 77, 82, 82, 73, 82, 58, 78,  6, 35],
       [82, 57, 82, 79, 76, 72, 60, 72, 79, 80],
       [79, 78, 75, 81, 76, 79, 62, 76, 77, 69],
       [80, 65, 77, 66, 69, 77, 55, 67, 77, 40],
       [82, 82, 82, 79, 82, 78, 54, 76, 71, 41],
       [70, 69, 67, 77, 70, 77, 57, 74, 79, 44],
       [78, 64, 80, 78, 45, 80, 60, 70, 62, 82],
       [35, 35, 80, 74, 82, 78, 66, 81, 81, 27],
       [40, 40, 40, 81, 78, 81, 39,  0, 10, 51],
       [75, 51, 51, 79, 77, 76, 49, 69, 54, 62]])
In [7]:
FieldGoals/Games
C:\Users\venkat\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: RuntimeWarning: invalid value encountered in true_divide
  """Entry point for launching an IPython kernel.
Out[7]:
array([[ 12.225     ,  10.55844156,   9.45121951,   9.75609756,
          9.80821918,   9.02439024,   9.89655172,   9.46153846,
          5.16666667,   7.6       ],
       [  7.70731707,   9.40350877,   7.8902439 ,   7.84810127,
          8.35526316,   7.13888889,   7.05      ,   6.18055556,
          5.84810127,   5.575     ],
       [ 11.07594937,   9.8974359 ,  10.58666667,   9.74074074,
         10.10526316,   9.59493671,  10.01612903,  10.06578947,
          9.96103896,   9.04347826],
       [  9.45      ,  10.63076923,   9.45454545,   8.10606061,
          9.97101449,   8.88311688,   8.01818182,   9.98507463,
          9.64935065,   8.95      ],
       [  5.70731707,   6.41463415,   7.1097561 ,   7.08860759,
          6.2195122 ,   7.93589744,   7.7037037 ,   6.18421053,
          6.66197183,   6.12195122],
       [  7.84285714,   7.86956522,   7.56716418,   7.98701299,
          8.57142857,   6.80519481,   6.89473684,   6.55405405,
          6.2278481 ,   7.79545455],
       [  5.21794872,   5.953125  ,   7.875     ,   8.08974359,
          6.97777778,   5.375     ,   7.08333333,   5.88571429,
          6.5483871 ,   6.92682927],
       [  8.74285714,   8.74285714,   7.3375    ,   8.93243243,
          9.68292683,   9.11538462,   9.74242424,   9.02469136,
         10.48148148,   8.81481481],
       [  5.2       ,   5.2       ,   5.2       ,   7.08641975,
          8.61538462,   8.77777778,   7.74358974,          nan,
          5.8       ,   6.62745098],
       [  9.32      ,   9.25490196,   8.60784314,  10.81012658,
          9.33766234,   9.10526316,   8.48979592,   8.24637681,
          7.68518519,   8.20967742]])
In [8]:
import warnings
warnings.filterwarnings('ignore')
FieldGoals/Games
Out[8]:
array([[ 12.225     ,  10.55844156,   9.45121951,   9.75609756,
          9.80821918,   9.02439024,   9.89655172,   9.46153846,
          5.16666667,   7.6       ],
       [  7.70731707,   9.40350877,   7.8902439 ,   7.84810127,
          8.35526316,   7.13888889,   7.05      ,   6.18055556,
          5.84810127,   5.575     ],
       [ 11.07594937,   9.8974359 ,  10.58666667,   9.74074074,
         10.10526316,   9.59493671,  10.01612903,  10.06578947,
          9.96103896,   9.04347826],
       [  9.45      ,  10.63076923,   9.45454545,   8.10606061,
          9.97101449,   8.88311688,   8.01818182,   9.98507463,
          9.64935065,   8.95      ],
       [  5.70731707,   6.41463415,   7.1097561 ,   7.08860759,
          6.2195122 ,   7.93589744,   7.7037037 ,   6.18421053,
          6.66197183,   6.12195122],
       [  7.84285714,   7.86956522,   7.56716418,   7.98701299,
          8.57142857,   6.80519481,   6.89473684,   6.55405405,
          6.2278481 ,   7.79545455],
       [  5.21794872,   5.953125  ,   7.875     ,   8.08974359,
          6.97777778,   5.375     ,   7.08333333,   5.88571429,
          6.5483871 ,   6.92682927],
       [  8.74285714,   8.74285714,   7.3375    ,   8.93243243,
          9.68292683,   9.11538462,   9.74242424,   9.02469136,
         10.48148148,   8.81481481],
       [  5.2       ,   5.2       ,   5.2       ,   7.08641975,
          8.61538462,   8.77777778,   7.74358974,          nan,
          5.8       ,   6.62745098],
       [  9.32      ,   9.25490196,   8.60784314,  10.81012658,
          9.33766234,   9.10526316,   8.48979592,   8.24637681,
          7.68518519,   8.20967742]])
In [9]:
round(FieldGoals/Games)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-9-41888b7000ee> in <module>()
----> 1 round(FieldGoals/Games)

TypeError: type numpy.ndarray doesn't define __round__ method
In [10]:
np.matrix.round(FieldGoals/Games fpg= np.matrix.round(FieldGoals/Games ,1))
Out[10]:
array([[ 12.,  11.,   9.,  10.,  10.,   9.,  10.,   9.,   5.,   8.],
       [  8.,   9.,   8.,   8.,   8.,   7.,   7.,   6.,   6.,   6.],
       [ 11.,  10.,  11.,  10.,  10.,  10.,  10.,  10.,  10.,   9.],
       [  9.,  11.,   9.,   8.,  10.,   9.,   8.,  10.,  10.,   9.],
       [  6.,   6.,   7.,   7.,   6.,   8.,   8.,   6.,   7.,   6.],
       [  8.,   8.,   8.,   8.,   9.,   7.,   7.,   7.,   6.,   8.],
       [  5.,   6.,   8.,   8.,   7.,   5.,   7.,   6.,   7.,   7.],
       [  9.,   9.,   7.,   9.,  10.,   9.,  10.,   9.,  10.,   9.],
       [  5.,   5.,   5.,   7.,   9.,   9.,   8.,  nan,   6.,   7.],
       [  9.,   9.,   9.,  11.,   9.,   9.,   8.,   8.,   8.,   8.]])
In [12]:
np.matrix.round(FieldGoals/Games)
Out[12]:
array([[ 12.2,  10.6,   9.5,   9.8,   9.8,   9. ,   9.9,   9.5,   5.2,
          7.6],
       [  7.7,   9.4,   7.9,   7.8,   8.4,   7.1,   7. ,   6.2,   5.8,
          5.6],
       [ 11.1,   9.9,  10.6,   9.7,  10.1,   9.6,  10. ,  10.1,  10. ,   9. ],
       [  9.4,  10.6,   9.5,   8.1,  10. ,   8.9,   8. ,  10. ,   9.6,   9. ],
       [  5.7,   6.4,   7.1,   7.1,   6.2,   7.9,   7.7,   6.2,   6.7,
          6.1],
       [  7.8,   7.9,   7.6,   8. ,   8.6,   6.8,   6.9,   6.6,   6.2,
          7.8],
       [  5.2,   6. ,   7.9,   8.1,   7. ,   5.4,   7.1,   5.9,   6.5,
          6.9],
       [  8.7,   8.7,   7.3,   8.9,   9.7,   9.1,   9.7,   9. ,  10.5,
          8.8],
       [  5.2,   5.2,   5.2,   7.1,   8.6,   8.8,   7.7,   nan,   5.8,
          6.6],
       [  9.3,   9.3,   8.6,  10.8,   9.3,   9.1,   8.5,   8.2,   7.7,
          8.2]])
In [13]:
fpg= np.matrix.round(FieldGoals/Games )
In [17]:
fpg
Out[17]:
array([[ 12.,  11.,   9.,  10.,  10.,   9.,  10.,   9.,   5.,   8.],
       [  8.,   9.,   8.,   8.,   8.,   7.,   7.,   6.,   6.,   6.],
       [ 11.,  10.,  11.,  10.,  10.,  10.,  10.,  10.,  10.,   9.],
       [  9.,  11.,   9.,   8.,  10.,   9.,   8.,  10.,  10.,   9.],
       [  6.,   6.,   7.,   7.,   6.,   8.,   8.,   6.,   7.,   6.],
       [  8.,   8.,   8.,   8.,   9.,   7.,   7.,   7.,   6.,   8.],
       [  5.,   6.,   8.,   8.,   7.,   5.,   7.,   6.,   7.,   7.],
       [  9.,   9.,   7.,   9.,  10.,   9.,  10.,   9.,  10.,   9.],
       [  5.,   5.,   5.,   7.,   9.,   9.,   8.,  nan,   6.,   7.],
       [  9.,   9.,   9.,  11.,   9.,   9.,   8.,   8.,   8.,   8.]])
In [18]:
fpg[Pdict['JoeJohnson']][Sdict['2007']]
Out[18]:
8.0
In [ ]:
range

No comments:

Post a Comment