/ Python And R Data science skills: 58 read csv and excel

Saturday, 10 February 2018

58 read csv and excel

https://vlrtraining.com/courses/python-data-science-beginner-tutorial 58 read csv and excel
In [5]:
import numpy as np
import pandas as pd
df = pd.read_csv('mycsv.csv')
In [11]:
df=pd.read_csv('mycsv.csv')
In [13]:
df.to_csv('mycsv2.csv',index=False)
In [20]:
df2=pd.read_excel('my1ex.xlsx',sheet_name='Sheet2')
In [14]:
pd.read_excel('Excel_Sample.xlsx',sheet_name='Sheet2')
Out[14]:
a b c d
0 0 1 2 3
1 4 5 6 7
2 666 9 10 11
3 12 13 14 15
In [21]:
df2.to_excel('ram1.xlsx',sheet_name='Sheet1')
In [14]:
data = {'A':['foo','foo','foo','bar','bar','bar'],
     'B':['one','one','two','two','one','one'],
       'C':['x','y','x','y','x','y'],
       'D':[1,3,2,5,4,1]}

df1 = pd.DataFrame(data)
In [15]:
df1
Out[15]:
A B C D
0 foo one x 1
1 foo one y 3
2 foo two x 2
3 bar two y 5
4 bar one x 4
5 bar one y 1
In [17]:
df1.to_csv('ram.csv',sep='@')
In [24]:
df = pd.read_html('https://en.wikipedia.org/wiki/List_of_mandals_in_Andhra_Pradesh')
In [28]:
conda install lxml
conda install html5lib
conda install BeautifulSoup4
In [30]:
df[1]
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-30-dc0ea82142cb> in <module>()
----> 1 df[1]

IndexError: list index out of range
In [31]:
df
Out[31]:
[                    0               1  \
 0            District  No. of Mandals   
 1           Anantapur              63   
 2         Chittoor[3]              66   
 3           Kadapa[4]              51   
 4    East Godavari[5]              64   
 5           Guntur[6]              57   
 6          Krishna[7]              53   
 7          Kurnool[9]              54   
 8         Nellore[10]              46   
 9        Prakasam[11]              56   
 10     Srikakulam[12]              38   
 11  Visakhapatnam[13]              46   
 12   Vizianagaram[15]              34   
 13  West Godavari[16]              48   
 14      Total Mandals             664   
 
                                                     2  
 0                                        Mandal Names  
 1   Agali Amadagur Amarapuram Anantapur Atmakur Ba...  
 2   B. Kothakota Baireddipalle Bangarupalem Buchin...  
 3   Atlur B.Kodur Badvel Brahmamgarimatham Chakray...  
 4   Amalapuram Addateegala Ainavilli Alamuru Allav...  
 5   Amaravati Amruthalur Achampet Bapatla Bhattipr...  
 6   A.Konduru Agiripalli Avanigadda Bantumilli Bap...  
 7   Adoni Allagadda Alur Aspari Atmakur Banaganapa...  
 8   Allur Ananthasagaram Anumasamudrampeta Atmakur...  
 9   Addanki Ardhaveedu Ballikuruva Bestavaripeta C...  
 10  Amadalavalasa Bhamini Burja Etcherla Gara Gang...  
 11  Anakapalli Anandapuram Ananthagiri Araku Valle...  
 12  Bhogapuram Badangi Bondapalli Balijipeta Bobbi...  
 13  Attili Akiveedu Achanta Buttayagudem Bhimavara...  
 14                                                NaN  ]
In [32]:
df4 = pd.read_html('https://en.wikipedia.org/wiki/List_of_countries_by_population_(United_Nations)')
In [38]:
df4[2]
Out[38]:
0 1 2 3 4 5 6
0 Rank Country or area UN continental region[2] UN statistical region[2] Population (1 July 2016)[3] Population (1 July 2017)[3] Change
1 World 7466964280 7550262101 7000111555135228260♠+1.1%
2 1 China[a] Asia Eastern Asia 1403500365 1409517397 6999428716097982630♠+0.4%
3 2 India Asia Southern Asia 1324171354 1339180127 7000113344643460699♠+1.1%
4 3 United States Americas Northern America 322179605 324459463 6999707635730076710♠+0.7%
5 4 Indonesia Asia South-eastern Asia 261115456 263991379 7000110139899186970♠+1.1%
6 5 Brazil Americas South America 207652865 209288278 6999787570641031120♠+0.8%
7 6 Pakistan Asia Southern Asia 193203476 197015955 7000197329731272540♠+2.0%
8 7 Nigeria Africa Western Africa 185989640 190886311 7000263276545940949♠+2.6%
9 8 Bangladesh Asia Southern Asia 162951560 164669751 7000105441825779390♠+1.1%
10 9 Russia Europe Eastern Europe 143964513 143989754 5000000000000000000♠0.0%
11 10 Mexico Americas Central America 127540423 129163276 7000127242246954130♠+1.3%
12 11 Japan Asia Eastern Asia 127748513 127484450 3000793294658545260♠−0.2%
13 12 Ethiopia Africa Eastern Africa 102403196 104957438 7000249429910371160♠+2.5%
14 13 Philippines Asia South-eastern Asia 103320222 104918090 7000154652009942450♠+1.5%
15 14 Egypt Africa Northern Africa 95688681 97553151 7000194847497166360♠+1.9%
16 15 Vietnam Asia South-eastern Asia 94569072 95540800 7000102753255313749♠+1.0%
17 16 Germany Europe Western Europe 81914672 82114224 6999243609594139630♠+0.2%
18 17 Democratic Republic of the Congo Africa Middle Africa 78736153 81339988 7000330703863573320♠+3.3%
19 18 Iran Asia Southern Asia 80277428 81162788 7000110287539356640♠+1.1%
20 19 Turkey Asia Western Asia 79512426 80745020 7000155019040671710♠+1.6%
21 20 Thailand Asia South-eastern Asia 68863514 69037513 6999252672264154290♠+0.3%
22 21 United Kingdom Europe Northern Europe 65788574 66181585 6999597384889357830♠+0.6%
23 22 France[b] Europe Western Europe 64720690 64979548 6999399961743300330♠+0.4%
24 23 Italy Europe Southern Europe 59429938 59359900 3000882150306130220♠−0.1%
25 24 Tanzania[c] Africa Eastern Africa 55572201 57310019 7000312713545392960♠+3.1%
26 25 South Africa Africa Southern Africa 56015473 56717156 7000125265924292030♠+1.3%
27 26 Myanmar Asia South-eastern Asia 52885223 53370609 6999917810254860800♠+0.9%
28 27 South Korea Asia Eastern Asia 50791919 50982212 6999374652117396870♠+0.4%
29 28 Colombia Americas South America 48653419 49065615 6999847208702845740♠+0.8%
... ... ... ... ... ... ... ...
205 204 Dominica Americas Caribbean 73543 73925 6999519424010442870♠+0.5%
206 205 Cayman Islands Americas Caribbean 60765 61559 7000130667324940339♠+1.3%
207 206 Bermuda Americas Northern America 61666 61349 3000485940388544740♠−0.5%
208 207 Greenland Americas Northern America 56412 56480 6999120541728710210♠+0.1%
209 208 American Samoa Oceania Polynesia 55599 55641 6998755409269950880♠+0.1%
210 209 Saint Kitts and Nevis Americas Caribbean 54821 55345 6999955838091242400♠+1.0%
211 210 Northern Mariana Islands Oceania Micronesia 55023 55144 6999219908038456640♠+0.2%
212 211 Marshall Islands Oceania Micronesia 53066 53127 6999114951192854180♠+0.1%
213 212 Faroe Islands Europe Northern Europe 49117 49290 6999352220208888990♠+0.4%
214 213 Sint Maarten Americas Caribbean 39537 40120 7000147456812605910♠+1.5%
215 214 Monaco Europe Western Europe 38499 38695 6999509104132574879♠+0.5%
216 215 Liechtenstein Europe Western Europe 37666 37922 6999679658047045080♠+0.7%
217 216 Turks and Caicos Islands Americas Caribbean 34900 35446 7000156446991404010♠+1.6%
218 217 Gibraltar Europe Southern Europe 34408 34571 6999473727040223190♠+0.5%
219 218 San Marino Europe Southern Europe 33203 33400 6999593319880733680♠+0.6%
220 219 British Virgin Islands Americas Caribbean 30661 31196 7000174488764228170♠+1.7%
221 220 Caribbean Netherlands[s] Americas Caribbean 25019 25398 7000151484871497660♠+1.5%
222 221 Palau Oceania Micronesia 21503 21729 7000105101613728320♠+1.1%
223 222 Cook Islands Oceania Polynesia 17379 17380 5000000000000000000♠0.0%
224 223 Anguilla Americas Caribbean 14764 14909 6999982118667027910♠+1.0%
225 224 Wallis and Futuna Oceania Polynesia 11899 11773 2999894108748634340♠−1.1%
226 225 Nauru Oceania Micronesia 11347 11359 6999105754825063900♠+0.1%
227 226 Tuvalu Oceania Polynesia 11097 11192 6999856087230783100♠+0.9%
228 227 Saint Pierre and Miquelon Americas Northern America 6305 6320 6999237906423473430♠+0.2%
229 228 Montserrat Americas Caribbean 5152 5177 6999485248447204970♠+0.5%
230 229 Saint Helena, Ascension and Tristan da Cunha Africa Western Africa 4035 4049 6999346964064436170♠+0.3%
231 230 Falkland Islands Americas South America 2910 2910 5000000000000000000♠0.0%
232 231 Niue Oceania Polynesia 1624 1618 3000630541871921189♠−0.4%
233 232 Tokelau Oceania Polynesia 1282 1300 7000140405616224650♠+1.4%
234 233 Vatican City[t] Europe Southern Europe 801 792 2999887640449438199♠−1.1%

235 rows × 7 columns

In [43]:
df4[0].to_excel('ram311.xlsx',sheet_name='Sheet1')

No comments:

Post a Comment