/ Python And R Data science skills: April 2018

Tuesday, 24 April 2018

26 home work in ggplot movie Gross Telugu

----------------
movie<-read.csv("movie.csv")

head(movie)
summary(movie)
str(movie)
library(ggplot2)
ggplot(data=movie,aes(x=Day.of.Week))+
  geom_bar()
# filtering data frame
filter1<-(movie$Genre=="action")|(movie$Genre=="adventure")|
  (movie$Genre=="animation")|(movie$Genre=="comedy")|
  (movie$Genre=="drama")
filter1
filter2<-movie$Studio %in% c("Buena Vista Studios","WB","Fox","Universal","Sony","Paramount Pictures")     
filter2
movie2<-movie[filter1 & filter2,]
movie2
tail(movie2)
vlr<-ggplot(data=movie2,aes(x=Genre,y=Gross...US))
vlr + geom_jitter()+
  geom_boxplot()

#use alpah
vlr + geom_jitter()+
  geom_boxplot(alpha=.7)
# use color and size
vlr + geom_jitter(aes(size=Budget...mill.,
                      color=Studio))+
  geom_boxplot(alpha=0.7)
# change block dots
vlr + geom_jitter(aes(size=Budget...mill.,
                      color=Studio))+
  geom_boxplot(alpha=0.7,outlier.colour = NA)

vlr1<- vlr + geom_jitter(aes(size=Budget...mill.,
                             color=Studio))+
  geom_boxplot(alpha=0.5,outlier.colour = NA)
vlr1
vlr1 +
  xlab("Genre")+
  ylab("Gross % Us")+
  ggtitle("Domestic Gross % by Genre")+
  theme(
    axis.title.x = element_text(color="Blue",size=10),
    axis.title.y = element_text(color="Blue",size=10),
   
    axis.text.y = element_text(size=10),
    axis.text.x = element_text(size=10),
    plot.title = element_text(size=20),
   
    legend.title = element_text(size=20),
    legend.text = element_text(size=20),
   
   
  )






25 limits and theme settings in R language


---------------------------------------
movie<-read.csv("Movie-Ratings.csv")
colnames(movie)<-c("Film","Genre","CriRating",
                   "AudRatining","BMill","Year")

movie$Year<-factor(movie$Year)
head(movie)
summary(movie)
library(ggplot2)
r<- ggplot(data=movie,
           aes(x=CriRating,y=AudRatining,
               color=Genre,
               size=BMill))
r + geom_point()
# movies with higest rating
#limits
r + geom_point() +
  xlim(50,100)+
  ylim(50,100)
r + geom_point() +
  xlim(1,50)+
  ylim(1,50)

r + geom_point() +
 coord_cartesian(ylim = c(1,50),
                 xlim = c(1,50))
r + geom_point() +
  coord_cartesian(ylim = c(80,100),
                  xlim = c(80,100))
# theme
r<- ggplot(data=movie,
           aes(x=BMill))
r + geom_histogram(binwidth = 10,
                   aes(fill=Genre),
                   color="Black")

k <- r + geom_histogram(binwidth = 10,
                        aes(fill=Genre),
                        color="Black")
k
k +
  xlab("Budget Money")+
  ylab("number Of Movies")
#####
k +
  xlab("Budget Money")+
  ylab("number Of Movies")+
  theme(axis.title.x = element_text(color = "Green",size=30),
        axis.title.y = element_text(color = "red",size=30)
        )

?theme

k +
  xlab("Budget Money")+
  ylab("number Of Movies")+
  theme(axis.title.x = element_text(color = "Green",size=30),
        axis.title.y = element_text(color = "red",size=30),
        legend.title = element_text(size=30),
        legend.text = element_text(size=20),
        legend.position = c(1,1)
  )

k +
  xlab("Budget Money")+
  ylab("number Of Movies")+
  theme(axis.title.x = element_text(color = "Green",size=30),
        axis.title.y = element_text(color = "red",size=30),
        legend.title = element_text(size=30),
        legend.text = element_text(size=20),
        legend.position = c(1,1),
        legend.justification = c(1,1)
  )
k +
  xlab("Budget Money")+
  ylab("number Of Movies")+
  ggtitle("Movie Budget Graph")+
  theme(axis.title.x = element_text(color = "Green",size=30),
        axis.title.y = element_text(color = "red",size=30),
        legend.title = element_text(size=30),
        legend.text = element_text(size=20),
        legend.position = c(1,1),
        legend.justification = c(1,1)
  )
#####
k +
  xlab("Budget Money")+
  ylab("number Of Movies")+
  ggtitle("Movie Budget Graph")+
  theme(axis.title.x = element_text(color = "Green",size=30),
        axis.title.y = element_text(color = "red",size=30),
        legend.title = element_text(size=30),
        legend.text = element_text(size=20),
        legend.position = c(1,1),
        legend.justification = c(1,1),
        plot.title = element_text(color="darkred",size=30,
                                  family="Courier")
  )

24 Box plot r language telugu

--------------------------------
movie<-read.csv("Movie-Ratings.csv")
colnames(movie)<-c("Film","Genre","CriRating",
                   "AudRatining","BMill","Year")

movie$Year<-factor(movie$Year)
head(movie)
summary(movie)
library(ggplot2)
r<- ggplot(data=movie,
           aes(x=CriRating,y=AudRatining,color=Genre))
r

r + geom_point()
r + geom_point()+ geom_smooth()
r + geom_point()+ geom_smooth(fill=NA)
#boxplot
r<- ggplot(data=movie,
           aes(x=Genre,y=AudRatining,color=Genre))
r + geom_boxplot()

r + geom_boxplot(size = 1.2)

r + geom_boxplot(size = 1.2) +
  geom_point()
r + geom_boxplot(size = 1.2) +
  geom_jitter()
#facets
r<- ggplot(data=movie,
           aes(x=BMill))
r +geom_histogram(binwidth = 10,
                  aes(fill=Genre),
                  color="Black")

r +geom_histogram(binwidth = 10,
                  aes(fill=Genre),
                  color="Black")+
  facet_grid(Genre~.)
r +geom_histogram(binwidth = 10,
                  aes(fill=Genre),
                  color="Black")+
  facet_grid(Genre~.,scale="free")
###
z<- ggplot(data=movie,
           aes(x=CriRating,y=AudRatining,color=Genre))

z+geom_point(size=1)+
  facet_grid(Genre~.)
z+geom_point(size=1)+
  facet_grid(.~Year)

z+geom_point(size=1)+
  facet_grid(Genre~Year)

z+geom_point(size=1)+
  geom_smooth()+
  facet_grid(Genre~Year)
z+geom_point(aes(size=BMill))+
  geom_smooth()+
  facet_grid(Genre~Year)

23 histograms in ggplot R language Telugu


-----------------------------------------

movie<-read.csv("Movie-Ratings.csv")
colnames(movie)<-c("Film","Genre","CriRating",
                   "AudRatining","BMill","Year")

movie$Year<-factor(movie$Year)
head(movie)
summary(movie)
library(ggplot2)



######## mapping and setting
r<- ggplot(data=movie,
           aes(x=CriRating,y=AudRatining))
r

r + geom_point()

######## mapping
r + geom_point(aes(color=Genre))
r + geom_point(aes(color="DarkGreen"))
#Setting
r + geom_point(color="DarkGreen")

r + geom_point(aes(size=BMill))
r + geom_point(size=BMill)
r + geom_point(size=5)
r + geom_point(aes(size=25))
# Histogram and density Charts
s<- ggplot(data=movie,
           aes(x=BMill))
s+geom_histogram()
s+geom_histogram(binwidth=20)
s+geom_histogram(binwidth=10,fill="Green")
s+geom_histogram(binwidth=10,aes(fill=Genre))
s+geom_histogram(binwidth=10,aes(fill=Genre),
                 color="black")
s+geom_density()
s+geom_density(aes(fill=Genre))   
s+geom_density(aes(fill=Genre),position = "stack")             
###############
t <- ggplot(data=movie)
t + geom_histogram(binwidth=10,
                   aes(x=AudRatining),
                   fill="white",
                   color="Blue")
t + geom_histogram(binwidth=10,
                   aes(x=CriRating),
                   fill="white",
                   color="Blue")

22 multi layers in ggplot in r language Telugu


----------------------------------------------
movie<-read.csv("Movie-Ratings.csv")
colnames(movie)<-c("Film","Genre","CriRating","AudRatining","BMill","Year")

movie$Year<-factor(movie$Year)
head(movie)
summary(movie)
library(ggplot2)


ggplot(data=movie,
       aes(x=CriRating,y=AudRatining,color=Genre,
           size=BMill)) +
  geom_point()
Myp<-ggplot(data=movie,
            aes(x=CriRating,y=AudRatining,color=Genre,
                size=BMill))

Myp
Myp + geom_point()
Myp + geom_line()
Myp + geom_point() + geom_line()

#########
Myp +geom_point(aes(size=CriRating))
Myp +geom_point(aes(color=BMill,size=CriRating))
Myp +geom_point(aes(color=BMill,size=AudRatining))
Myp +geom_point(aes(x=BMill))+
  xlab("Budget in Milion")
Myp + geom_point() + geom_line()
Myp + geom_point() + geom_line(size=.4)



Sunday, 22 April 2018

21 ggplot visuvalization in r language Telugu

-----------------------------------------------------
movie<-read.csv("Movie-Ratings.csv")
movie
head(movie)
colnames(movie)
colnames(movie)<-c("Film","Genre","CriRating","AudRatining","BMill","Year")
head(movie)
tail(movie)
str(movie)
summary(movie)
#convert year to factor
factor(movie$Year)
movie$Year<-factor(movie$Year)
head(movie)
summary(movie)
library(ggplot2)
ggplot(data=movie,aes(x=CriRating,y=AudRatining))
ggplot(data=movie,
       aes(x=CriRating,y=AudRatining)) +
  geom_point()
#add color
ggplot(data=movie,
       aes(x=CriRating,y=AudRatining,color=Genre)) +
  geom_point()
#size
ggplot(data=movie,
       aes(x=CriRating,y=AudRatining,color=Genre,
           size=Genre)) +
  geom_point()
#size
ggplot(data=movie,
       aes(x=CriRating,y=AudRatining,color=Genre,
           size=BMill)) +
  geom_point()



20 Example program for data frame r language Telugu

---------------------------
vlrdata<-read.csv("Section5-Homework-Data.csv")
head(vlrdata)
tail(vlrdata)
str(vlrdata)
summary(vlrdata)
vlrdata$Year
temp<-factor(vlrdata$Year)
temp 
levels(temp)
#filter and split
vlrdata$Year == 2013
vlrdata$Year == 1960
data1960<-vlrdata[vlrdata$Year == 1960,]
data1960
data2013<-vlrdata[vlrdata$Year == 2013,]
data2013
nrow(data2013)
nrow(data1960)
Country_Code <- c("ABW","AFG","AGO","ALB","ARE","ARG","ARM","ATG","AUS","AUT","AZE","BDI","BEL","BEN","BFA","BGD","BGR","BHR","BHS","BIH","BLR","BLZ","BOL","BRA","BRB","BRN","BTN","BWA","CAF","CAN","CHE","CHL","CHN","CIV","CMR","COG","COL","COM","CPV","CRI","CUB","CYP","CZE","DEU","DJI","DNK","DOM","DZA","ECU","EGY","ERI","ESP","EST","ETH","FIN","FJI","FRA","FSM","GAB","GBR","GEO","GHA","GIN","GMB","GNB","GNQ","GRC","GRD","GTM","GUM","GUY","HKG","HND","HRV","HTI","HUN","IDN","IND","IRL","IRN","IRQ","ISL","ITA","JAM","JOR","JPN","KAZ","KEN","KGZ","KHM","KIR","KOR","KWT","LAO","LBN","LBR","LBY","LCA","LKA","LSO","LTU","LUX","LVA","MAC","MAR","MDA","MDG","MDV","MEX","MKD","MLI","MLT","MMR","MNE","MNG","MOZ","MRT","MUS","MWI","MYS","NAM","NCL","NER","NGA","NIC","NLD","NOR","NPL","NZL","OMN","PAK","PAN","PER","PHL","PNG","POL","PRI","PRT","PRY","PYF","QAT","ROU","RUS","RWA","SAU","SDN","SEN","SGP","SLB","SLE","SLV","SOM","SSD","STP","SUR","SVK","SVN","SWE","SWZ","SYR","TCD","TGO","THA","TJK","TKM","TLS","TON","TTO","TUN","TUR","TZA","UGA","UKR","URY","USA","UZB","VCT","VEN","VIR","VNM","VUT","WSM","YEM","ZAF","COD","ZMB","ZWE")
Life_Expectancy_At_Birth_1960 <- c(65.5693658536586,32.328512195122,32.9848292682927,62.2543658536585,52.2432195121951,65.2155365853659,65.8634634146342,61.7827317073171,70.8170731707317,68.5856097560976,60.836243902439,41.2360487804878,69.7019512195122,37.2782682926829,34.4779024390244,45.8293170731707,69.2475609756098,52.0893658536585,62.7290487804878,60.2762195121951,67.7080975609756,59.9613658536585,42.1183170731707,54.2054634146342,60.7380487804878,62.5003658536585,32.3593658536585,50.5477317073171,36.4826341463415,71.1331707317073,71.3134146341463,57.4582926829268,43.4658048780488,36.8724146341463,41.523756097561,48.5816341463415,56.716756097561,41.4424390243903,48.8564146341463,60.5761951219512,63.9046585365854,69.5939268292683,70.3487804878049,69.3129512195122,44.0212682926829,72.1765853658537,51.8452682926829,46.1351219512195,53.215,48.0137073170732,37.3629024390244,69.1092682926829,67.9059756097561,38.4057073170732,68.819756097561,55.9584878048781,69.8682926829268,57.5865853658537,39.5701219512195,71.1268292682927,63.4318536585366,45.8314634146342,34.8863902439024,32.0422195121951,37.8404390243902,36.7330487804878,68.1639024390244,59.8159268292683,45.5316341463415,61.2263414634146,60.2787317073171,66.9997073170732,46.2883170731707,64.6086585365854,42.1000975609756,68.0031707317073,48.6403170731707,41.1719512195122,69.691756097561,44.945512195122,48.0306829268293,73.4286585365854,69.1239024390244,64.1918292682927,52.6852682926829,67.6660975609756,58.3675853658537,46.3624146341463,56.1280731707317,41.2320243902439,49.2159756097561,53.0013170731707,60.3479512195122,43.2044634146342,63.2801219512195,34.7831707317073,42.6411951219512,57.303756097561,59.7471463414634,46.5107073170732,69.8473170731707,68.4463902439024,69.7868292682927,64.6609268292683,48.4466341463415,61.8127804878049,39.9746829268293,37.2686341463415,57.0656341463415,60.6228048780488,28.2116097560976,67.6017804878049,42.7363902439024,63.7056097560976,48.3688048780488,35.0037073170732,43.4830975609756,58.7452195121951,37.7736341463415,59.4753414634146,46.8803902439024,58.6390243902439,35.5150487804878,37.1829512195122,46.9988292682927,73.3926829268293,73.549756097561,35.1708292682927,71.2365853658537,42.6670731707317,45.2904634146342,60.8817073170732,47.6915853658537,57.8119268292683,38.462243902439,67.6804878048781,68.7196097560976,62.8089268292683,63.7937073170732,56.3570487804878,61.2060731707317,65.6424390243903,66.0552926829268,42.2492926829268,45.6662682926829,48.1876341463415,38.206,65.6598292682927,49.3817073170732,30.3315365853659,49.9479268292683,36.9658780487805,31.6767073170732,50.4513658536585,59.6801219512195,69.9759268292683,68.9780487804878,73.0056097560976,44.2337804878049,52.768243902439,38.0161219512195,40.2728292682927,54.6993170731707,56.1535365853659,54.4586829268293,33.7271219512195,61.3645365853659,62.6575853658537,42.009756097561,45.3844146341463,43.6538780487805,43.9835609756098,68.2995365853659,67.8963902439025,69.7707317073171,58.8855365853659,57.7238780487805,59.2851219512195,63.7302195121951,59.0670243902439,46.4874878048781,49.969512195122,34.3638048780488,49.0362926829268,41.0180487804878,45.1098048780488,51.5424634146342)
Life_Expectancy_At_Birth_2013 <- c(75.3286585365854,60.0282682926829,51.8661707317073,77.537243902439,77.1956341463415,75.9860975609756,74.5613658536585,75.7786585365854,82.1975609756098,80.890243902439,70.6931463414634,56.2516097560976,80.3853658536585,59.3120243902439,58.2406341463415,71.245243902439,74.4658536585366,76.5459512195122,75.0735365853659,76.2769268292683,72.4707317073171,69.9820487804878,67.9134390243903,74.1224390243903,75.3339512195122,78.5466585365854,69.1029268292683,64.3608048780488,49.8798780487805,81.4011219512195,82.7487804878049,81.1979268292683,75.3530243902439,51.2084634146342,55.0418048780488,61.6663902439024,73.8097317073171,62.9321707317073,72.9723658536585,79.2252195121951,79.2563902439025,79.9497804878049,78.2780487804878,81.0439024390244,61.6864634146342,80.3024390243903,73.3199024390244,74.5689512195122,75.648512195122,70.9257804878049,63.1778780487805,82.4268292682927,76.4243902439025,63.4421951219512,80.8317073170732,69.9179268292683,81.9682926829268,68.9733902439024,63.8435853658537,80.9560975609756,74.079512195122,61.1420731707317,58.216487804878,59.9992682926829,54.8384146341464,57.2908292682927,80.6341463414634,73.1935609756098,71.4863902439024,78.872512195122,66.3100243902439,83.8317073170732,72.9428536585366,77.1268292682927,62.4011463414634,75.2682926829268,68.7046097560976,67.6604146341463,81.0439024390244,75.1259756097561,69.4716829268293,83.1170731707317,82.290243902439,73.4689268292683,73.9014146341463,83.3319512195122,70.45,60.9537804878049,70.2024390243902,67.7720487804878,65.7665853658537,81.459756097561,74.462756097561,65.687243902439,80.1288780487805,60.5203902439024,71.6576829268293,74.9127073170732,74.2402926829268,49.3314634146342,74.1634146341464,81.7975609756098,73.9804878048781,80.3391463414634,73.7090487804878,68.811512195122,64.6739024390244,76.6026097560976,76.5326585365854,75.1870487804878,57.5351951219512,80.7463414634146,65.6540975609756,74.7583658536585,69.0618048780488,54.641512195122,62.8027073170732,74.46,61.466,74.567512195122,64.3438780487805,77.1219512195122,60.8281463414634,52.4421463414634,74.514756097561,81.1048780487805,81.4512195121951,69.222,81.4073170731707,76.8410487804878,65.9636829268293,77.4192195121951,74.2838536585366,68.1315609756097,62.4491707317073,76.8487804878049,78.7111951219512,80.3731707317073,72.7991707317073,76.3340731707317,78.4184878048781,74.4634146341463,71.0731707317073,63.3948292682927,74.1776341463415,63.1670487804878,65.878756097561,82.3463414634146,67.7189268292683,50.3631219512195,72.4981463414634,55.0230243902439,55.2209024390244,66.259512195122,70.99,76.2609756097561,80.2780487804878,81.7048780487805,48.9379268292683,74.7157804878049,51.1914878048781,59.1323658536585,74.2469268292683,69.4001707317073,65.4565609756098,67.5223658536585,72.6403414634147,70.3052926829268,73.6463414634147,75.1759512195122,64.2918292682927,57.7676829268293,71.159512195122,76.8361951219512,78.8414634146341,68.2275853658537,72.8108780487805,74.0744146341464,79.6243902439024,75.756487804878,71.669243902439,73.2503902439024,63.583512195122,56.7365853658537,58.2719268292683,59.2373658536585,55.633)
adddata1960<-data.frame(code=Country_Code,
                        lifeexp=Life_Expectancy_At_Birth_1960)
adddata2013<-data.frame(code=Country_Code,
                        lifeexp=Life_Expectancy_At_Birth_2013)
summary(adddata1960)
summary(adddata2013)
head(data1960)
###
m1960<-merge(data1960,adddata1960,by.x="Country.Code",by.y="code")
head(m1960)
m2013<-merge(data2013,adddata2013,by.x="Country.Code",by.y="code")
head(m2013)


qplot(data=m1960,x=Fertility.Rate,
      y=lifeexp,color=Region,
      size=I(5),
      shape=I(17),alpha=I(.4),
      main="1960 Data")

qplot(data=m2013,x=Fertility.Rate,
      y=lifeexp,color=Region,
      size=I(5),
      shape=I(17),alpha=I(.4),
      main="2013 Data")






19 more on Qplots In R Language

-----------------------------------


wbvlr<-read.csv("gd.csv")
Countries_2012_Dataset <- c("Aruba","Afghanistan","Angola","Albania","United Arab Emirates","Argentina","Armenia","Antigua and Barbuda","Australia","Austria","Azerbaijan","Burundi","Belgium","Benin","Burkina Faso","Bangladesh","Bulgaria","Bahrain","Bahamas, The","Bosnia and Herzegovina","Belarus","Belize","Bermuda","Bolivia","Brazil","Barbados","Brunei Darussalam","Bhutan","Botswana","Central African Republic","Canada","Switzerland","Chile","China","Cote d'Ivoire","Cameroon","Congo, Rep.","Colombia","Comoros","Cabo Verde","Costa Rica","Cuba","Cayman Islands","Cyprus","Czech Republic","Germany","Djibouti","Denmark","Dominican Republic","Algeria","Ecuador","Egypt, Arab Rep.","Eritrea","Spain","Estonia","Ethiopia","Finland","Fiji","France","Micronesia, Fed. Sts.","Gabon","United Kingdom","Georgia","Ghana","Guinea","Gambia, The","Guinea-Bissau","Equatorial Guinea","Greece","Grenada","Greenland","Guatemala","Guam","Guyana","Hong Kong SAR, China","Honduras","Croatia","Haiti","Hungary","Indonesia","India","Ireland","Iran, Islamic Rep.","Iraq","Iceland","Israel","Italy","Jamaica","Jordan","Japan","Kazakhstan","Kenya","Kyrgyz Republic","Cambodia","Kiribati","Korea, Rep.","Kuwait","Lao PDR","Lebanon","Liberia","Libya","St. Lucia","Liechtenstein","Sri Lanka","Lesotho","Lithuania","Luxembourg","Latvia","Macao SAR, China","Morocco","Moldova","Madagascar","Maldives","Mexico","Macedonia, FYR","Mali","Malta","Myanmar","Montenegro","Mongolia","Mozambique","Mauritania","Mauritius","Malawi","Malaysia","Namibia","New Caledonia","Niger","Nigeria","Nicaragua","Netherlands","Norway","Nepal","New Zealand","Oman","Pakistan","Panama","Peru","Philippines","Papua New Guinea","Poland","Puerto Rico","Portugal","Paraguay","French Polynesia","Qatar","Romania","Russian Federation","Rwanda","Saudi Arabia","Sudan","Senegal","Singapore","Solomon Islands","Sierra Leone","El Salvador","Somalia","Serbia","South Sudan","Sao Tome and Principe","Suriname","Slovak Republic","Slovenia","Sweden","Swaziland","Seychelles","Syrian Arab Republic","Chad","Togo","Thailand","Tajikistan","Turkmenistan","Timor-Leste","Tonga","Trinidad and Tobago","Tunisia","Turkey","Tanzania","Uganda","Ukraine","Uruguay","United States","Uzbekistan","St. Vincent and the Grenadines","Venezuela, RB","Virgin Islands (U.S.)","Vietnam","Vanuatu","West Bank and Gaza","Samoa","Yemen, Rep.","South Africa","Congo, Dem. Rep.","Zambia","Zimbabwe")
Codes_2012_Dataset <- c("ABW","AFG","AGO","ALB","ARE","ARG","ARM","ATG","AUS","AUT","AZE","BDI","BEL","BEN","BFA","BGD","BGR","BHR","BHS","BIH","BLR","BLZ","BMU","BOL","BRA","BRB","BRN","BTN","BWA","CAF","CAN","CHE","CHL","CHN","CIV","CMR","COG","COL","COM","CPV","CRI","CUB","CYM","CYP","CZE","DEU","DJI","DNK","DOM","DZA","ECU","EGY","ERI","ESP","EST","ETH","FIN","FJI","FRA","FSM","GAB","GBR","GEO","GHA","GIN","GMB","GNB","GNQ","GRC","GRD","GRL","GTM","GUM","GUY","HKG","HND","HRV","HTI","HUN","IDN","IND","IRL","IRN","IRQ","ISL","ISR","ITA","JAM","JOR","JPN","KAZ","KEN","KGZ","KHM","KIR","KOR","KWT","LAO","LBN","LBR","LBY","LCA","LIE","LKA","LSO","LTU","LUX","LVA","MAC","MAR","MDA","MDG","MDV","MEX","MKD","MLI","MLT","MMR","MNE","MNG","MOZ","MRT","MUS","MWI","MYS","NAM","NCL","NER","NGA","NIC","NLD","NOR","NPL","NZL","OMN","PAK","PAN","PER","PHL","PNG","POL","PRI","PRT","PRY","PYF","QAT","ROU","RUS","RWA","SAU","SDN","SEN","SGP","SLB","SLE","SLV","SOM","SRB","SSD","STP","SUR","SVK","SVN","SWE","SWZ","SYC","SYR","TCD","TGO","THA","TJK","TKM","TLS","TON","TTO","TUN","TUR","TZA","UGA","UKR","URY","USA","UZB","VCT","VEN","VIR","VNM","VUT","PSE","WSM","YEM","ZAF","COD","ZMB","ZWE")
Regions_2012_Dataset <- c("The Americas","Asia","Africa","Europe","Middle East","The Americas","Asia","The Americas","Oceania","Europe","Asia","Africa","Europe","Africa","Africa","Asia","Europe","Middle East","The Americas","Europe","Europe","The Americas","The Americas","The Americas","The Americas","The Americas","Asia","Asia","Africa","Africa","The Americas","Europe","The Americas","Asia","Africa","Africa","Africa","The Americas","Africa","Africa","The Americas","The Americas","The Americas","Europe","Europe","Europe","Africa","Europe","The Americas","Africa","The Americas","Africa","Africa","Europe","Europe","Africa","Europe","Oceania","Europe","Oceania","Africa","Europe","Asia","Africa","Africa","Africa","Africa","Africa","Europe","The Americas","The Americas","The Americas","Oceania","The Americas","Asia","The Americas","Europe","The Americas","Europe","Asia","Asia","Europe","Middle East","Middle East","Europe","Middle East","Europe","The Americas","Middle East","Asia","Asia","Africa","Asia","Asia","Oceania","Asia","Middle East","Asia","Middle East","Africa","Africa","The Americas","Europe","Asia","Africa","Europe","Europe","Europe","Asia","Africa","Europe","Africa","Asia","The Americas","Europe","Africa","Europe","Asia","Europe","Asia","Africa","Africa","Africa","Africa","Asia","Africa","Oceania","Africa","Africa","The Americas","Europe","Europe","Asia","Oceania","Middle East","Asia","The Americas","The Americas","Asia","Oceania","Europe","The Americas","Europe","The Americas","Oceania","Middle East","Europe","Europe","Africa","Middle East","Africa","Africa","Asia","Oceania","Africa","The Americas","Africa","Europe","Africa","Africa","The Americas","Europe","Europe","Europe","Africa","Africa","Middle East","Africa","Africa","Asia","Asia","Asia","Asia","Oceania","The Americas","Africa","Europe","Africa","Africa","Europe","The Americas","The Americas","Asia","The Americas","The Americas","The Americas","Asia","Oceania","Middle East","Oceania","Middle East","Africa","Africa","Africa","Africa")

newvlr<-data.frame(Codes_2012_Dataset,
                   Countries_2012_Dataset,
                   Regions_2012_Dataset)

head(newvlr)
newvlr<-data.entry(Codes_2012_Dataset,Countries_2012_Dataset,Regions_2012_Dataset)
colnames(newvlr)<-c("codes","countries","Region")
newvlr
newvlr<-data.frame(codes=Codes_2012_Dataset,
                   countries=Countries_2012_Dataset,
                   Region=Regions_2012_Dataset)
## merging
merg<-merge(wbvlr,newvlr,by.x="Country.Code",
            by.y="codes")
head(wbvlr)
head(wbvlr)
head(newvlr)
head(merg)
merg$countries<- NULL
qplot(data=merg,x=Internet.users,y=Birth.rate,
      color=Region)
qplot(data=merg,x=Internet.users,y=Birth.rate,
      color=Region,size=I(5))
qplot(data=merg,x=Internet.users,y=Birth.rate,
      color=Region,size=I(5),shape=I(17))
qplot(data=merg,x=Internet.users,y=Birth.rate,
      color=Region,size=I(5),shape=I(17),alpha=I(.7))
qplot(data=merg,x=Internet.users,y=Birth.rate,
      color=Region,size=I(5),shape=I(4),alpha=I(.3),
      main="my visuvali")




Friday, 20 April 2018

18 Qplot in R Language Telugu

-------------------------------

#install.packages("ggplot2")
library(ggplot2)
?qplot
wbvlr<-read.csv("gd.csv")
head(wbvlr)
qplot(data=wbvlr,x=Internet.users)
qplot(data=wbvlr,x=Income.Group)
qplot(data=wbvlr,x=Income.Group,
      y=Birth.rate)
qplot(data=wbvlr,x=Income.Group,
      y=Birth.rate,size=115)
qplot(data=wbvlr,x=Income.Group,
      y=Birth.rate,size=I(.5))
qplot(data=wbvlr,x=Income.Group,
      y=Birth.rate,size=I(5),
      color=I("Blue"))
qplot(data=wbvlr,x=Income.Group,y=Birth.rate,size=I(.9),
      color="Y",geom = "boxplot")

head(wbvlr)
qplot(data=wbvlr,x=Internet.users,
      y=Birth.rate)
qplot(data=wbvlr,x=Internet.users,
      y=Birth.rate,color=I("red"),
      size=4)
qplot(data=wbvlr,x=Internet.users,
      y=Birth.rate,color=Income.Group,
      size=I(4))



17 filters in Data Frame R Language Telugu

---------------------------------------------
wbvlr<-read.csv("gd.csv")
wbvlr
nrow(wbvlr)
ncol(wbvlr)
head(wbvlr)
tail(wbvlr)
head(wbvlr,n=10)
tail(wbvlr,n=1)
?str()
#Interview
str(wbvlr)
summary(wbvlr)
###
head(wbvlr)
wbvlr[1,3]
wbvlr[,3]
wbvlr[2,]
wbvlr[c(1,2,9),]
wbvlr[2,"Income.Group"]
wbvlr[,3]
wbvlr$
  wbvlr$Income.Group
wbvlr$Country.Name
wbvlr$Country.Name[3]
wbvlr$Income.Group

levels(wbvlr$Income.Group)
levels(wbvlr$Country.Name)
levels(wbvlr$Internet.users)
head(wbvlr)
# ------------
wbvlr[1:10,]
wbvlr[1:10,]
wbvlr[c(1,4),]
wbvlr[1,]
is.data.frame(wbvlr[1,])
wbvlr[,1]
is.data.frame(wbvlr[,1])
wbvlr[,1,drop=F]
#--
wbvlr$Birth.rate * wbvlr$Internet.users
wbvlr$Birth.rate*wbvlr$Internet.users
#extra column
head(wbvlr)
wbvlr$bi
wbvlr$a<- wbvlr$Birth.rate * wbvlr$Internet.users
wbvlr$bi<-  wbvlr$Birth.rate * wbvlr$Internet.users
wbvlr$bi<-NULL
wbvlr$a
wbvlr
wbvlr$b<-c(1:3)
head(wbvlr)
wbvlr$d<-c(1:4)
wbvlr$ramesh<-c(1:4)
wbvlr
#remove cou
wbvlr$ramesh<-NULL
# filter ing data
head(wbvlr)
wbvlr$b<-NULL
wbvlr$c<-NULL
wbvlr$Internet.users<2
wbvlr$Internet.users<2

les2<-wbvlr$Internet.users<2
wbvlr[les2,]
wbvlr[wbvlr$Birth.rate>40,]
str(wbvlr[wbvlr$Birth.rate>40,])
wbvlr[wbvlr$Birth.rate>40 & les2,]
wbvlr[wbvlr$Income.Group == "Low income",]

wbvlr[wbvlr$Income.Group == "Low income",]

16 Data Frames functions and $ symbol in R language

-------------------------------------------------
wbvlr<-read.csv("gd.csv")
wbvlr
nrow(wbvlr)
ncol(wbvlr)
head(wbvlr)
tail(wbvlr)
head(wbvlr,n=10)
tail(wbvlr,n=1)
?str()
#Interview
str(wbvlr)
summary(wbvlr)
###
head(wbvlr)
wbvlr[1,3]
wbvlr[,3]
wbvlr[2,]
wbvlr[c(1,2,9),]
wbvlr[2,"Income.Group"]
wbvlr[,3]
wbvlr$
wbvlr$Income.Group
wbvlr$Country.Name
wbvlr$Country.Name[3]
wbvlr$Income.Group

levels(wbvlr$Income.Group)
levels(wbvlr$Country.Name)
levels(wbvlr$Internet.users)
head(wbvlr)

15 Data Frames in R language

------------------------------------------------
#read file Manu
#a<-read.csv(file.choose())
#a
#read.csv(file.choose())
Demodata<-read.csv(file.choose())
Demodata
#red file pwd
getwd()
setwd("E:\\vlr training\\data frames")
setwd("C:\\Users\\venkat\\Desktop\\R langugae telugu")
getwd()
demodata1<-read.csv("gd.csv")
demodata1

r language videos

Thursday, 19 April 2018

14 Creating functions In R Language Telugu


------------------------
#step 1
a=MinutesPlayed[c(1,3),,drop=F]

matplot(t(a),type = "b",pch = 18:20,col = c(1:10,6))

legend("bottomleft",inset=.01,legend = Players[c(1,3)],pch = 18:20,col = c(1:10,6),horiz = FALSE   )

#step2
a=MinutesPlayed[c(1),,drop=F]
matplot(t(a),type = "b",pch = 18:20,col = c(1:10,6))

legend("bottomleft",inset=.01,legend = Players[c(1)],pch = 18:20,col = c(1:10,6),horiz = FALSE   )

# step3
myvlr<- function()
{
  a=MinutesPlayed[c(1,3),,drop=F]
  matplot(t(a),type = "b",pch = 18:20,col = c(1:10,6))
 
  legend("bottomleft",inset=.01,legend = Players[c(1,3)],pch = 18:20,col = c(1:10,6),horiz = FALSE   )
 
}





myvlr()

#step 4
myvlr<- function(z)
{
  a=MinutesPlayed[z,,drop=F]
  matplot(t(a),type = "b",pch = 18:20,col = c(1:10,6))
 
  legend("bottomleft",inset=.01,legend = Players[z],pch = 18:20,col = c(1:10,6),horiz = FALSE   )
 
}



myvlr(c(4:7,9))
#step5
myvlr<- function(m,z)
{
  a=m[z,,drop=F]
  matplot(t(a),type = "b",pch = 18:20,col = c(1:10,6))
 
  legend("bottomleft",inset=.01,legend = Players[z],pch = 18:20,col = c(1:10,6),horiz = FALSE   )
 
}



myvlr(Points,c(1:2,4))
myvlr(FieldGoalAttempts/FieldGoals,c(1))
Points
#step 6
myvlr<- function(m,z=c(1:5))
{
  a=m[z,,drop=F]
  matplot(t(a),type = "b",pch = 18:20,col = c(1:10,6))
 
  legend("bottomleft",inset=.01,legend = Players[z],pch = 18:20,col = c(1:10,6),horiz = FALSE   )
 
}



myvlr(Points)





13 subset visuvalization in r language

---------------------------------
MinutesPlayed
a=MinutesPlayed[c(1,3),]
#a
matplot(t(a),type = "l",pch = 18:20,col = c(1:10,6))

legend("bottomleft",inset=.01,legend = Players[c(1,3)],pch = 18:20,col = c(1:10,6),horiz = FALSE   )

a=MinutesPlayed[c(1,3),]
matplot(t(a),type = "b",pch = 18:20,col = c(1:10,6))

legend("bottomleft",inset=.01,legend = Players[c(1,3)],pch = 18:20,col = c(1:10,6),horiz = FALSE   )

a=MinutesPlayed[1,]
matplot(t(a),type = "b",pch = 18:20,col = c(1:10,6))

legend("bottomleft",inset=.01,legend = Players[c(1)],pch = 18:20,col = c(1:10,6),horiz = FALSE   )

a=MinutesPlayed[1,,drop=F]
matplot(t(a),type = "b",pch = 18:20,col = c(1:10,6))

legend("bottomleft",inset=.01,legend = Players[c(1)],pch = 18:20,col = c(1:10,6),horiz = FALSE   )

12 subsets in r Language Telugu

------------------------------------------
#Dear Student,
#
#Welcome to the world of Basketball Data!
#I'm sure you will enjoy this section of the R Programming course.
#
#Instructions for this dataset:
# Simply select ALL the lines in this script by pressing
# CTRL+A on Windows or CMND+A on a Mac and execute them
# Once you have executed the commands the following objects
# will be created:
# Matrices:
# - FieldGoalAttempts
# - FieldGoals
# - Games
# - MinutesPlayed
# - Salary
# Vectors:
# - Players
# - Seasons
#We will go understand these inside the course.
#
#Sincerely,
#Kirill Eremenko
#www.superdatascience.com

#Copyright: These datasets were prepared using publicly available data.
#           However, theses scripts are subject to Copyright Laws.
#           If you wish to use these R scripts outside of the R Programming Course
#           by Kirill Eremenko, you may do so by referencing www.superdatascience.com in your work.

#Comments:
#Seasons are labeled based on the first year in the season
#E.g. the 2012-2013 season is preseneted as simply 2012

#Notes and Corrections to the data:
#Kevin Durant: 2006 - College Data Used
#Kevin Durant: 2005 - Proxied With 2006 Data
#Derrick Rose: 2012 - Did Not Play
#Derrick Rose: 2007 - College Data Used
#Derrick Rose: 2006 - Proxied With 2007 Data
#Derrick Rose: 2005 - Proxied With 2007 Data

#Seasons
Seasons <- c("2005","2006","2007","2008","2009","2010","2011","2012","2013","2014")

#Players
Players <- c("Ramesh","Venkat","Prasad","Lakshman","Vijay","Praveen","Mohan","Anji","Tinku","Ambani")

#Salaries
KobeBryant_Salary <- c(15946875,17718750,19490625,21262500,23034375,24806250,25244493,27849149,30453805,23500000)
JoeJohnson_Salary <- c(12000000,12744189,13488377,14232567,14976754,16324500,18038573,19752645,21466718,23180790)
LeBronJames_Salary <- c(4621800,5828090,13041250,14410581,15779912,14500000,16022500,17545000,19067500,20644400)
CarmeloAnthony_Salary <- c(3713640,4694041,13041250,14410581,15779912,17149243,18518574,19450000,22407474,22458000)
DwightHoward_Salary <- c(4493160,4806720,6061274,13758000,15202590,16647180,18091770,19536360,20513178,21436271)
ChrisBosh_Salary <- c(3348000,4235220,12455000,14410581,15779912,14500000,16022500,17545000,19067500,20644400)
ChrisPaul_Salary <- c(3144240,3380160,3615960,4574189,13520500,14940153,16359805,17779458,18668431,20068563)
KevinDurant_Salary <- c(0,0,4171200,4484040,4796880,6053663,15506632,16669630,17832627,18995624)
DerrickRose_Salary <- c(0,0,0,4822800,5184480,5546160,6993708,16402500,17632688,18862875)
DwayneWade_Salary <- c(3031920,3841443,13041250,14410581,15779912,14200000,15691000,17182000,18673000,15000000)
#Matrix
Salary <- rbind(KobeBryant_Salary, JoeJohnson_Salary, LeBronJames_Salary, CarmeloAnthony_Salary, DwightHoward_Salary, ChrisBosh_Salary, ChrisPaul_Salary, KevinDurant_Salary, DerrickRose_Salary, DwayneWade_Salary)
rm(KobeBryant_Salary, JoeJohnson_Salary, CarmeloAnthony_Salary, DwightHoward_Salary, ChrisBosh_Salary, LeBronJames_Salary, ChrisPaul_Salary, DerrickRose_Salary, DwayneWade_Salary, KevinDurant_Salary)
colnames(Salary) <- Seasons
rownames(Salary) <- Players

#Games
KobeBryant_G <- c(80,77,82,82,73,82,58,78,6,35)
JoeJohnson_G <- c(82,57,82,79,76,72,60,72,79,80)
LeBronJames_G <- c(79,78,75,81,76,79,62,76,77,69)
CarmeloAnthony_G <- c(80,65,77,66,69,77,55,67,77,40)
DwightHoward_G <- c(82,82,82,79,82,78,54,76,71,41)
ChrisBosh_G <- c(70,69,67,77,70,77,57,74,79,44)
ChrisPaul_G <- c(78,64,80,78,45,80,60,70,62,82)
KevinDurant_G <- c(35,35,80,74,82,78,66,81,81,27)
DerrickRose_G <- c(40,40,40,81,78,81,39,0,10,51)
DwayneWade_G <- c(75,51,51,79,77,76,49,69,54,62)
#Matrix
Games <- rbind(KobeBryant_G, JoeJohnson_G, LeBronJames_G, CarmeloAnthony_G, DwightHoward_G, ChrisBosh_G, ChrisPaul_G, KevinDurant_G, DerrickRose_G, DwayneWade_G)
rm(KobeBryant_G, JoeJohnson_G, CarmeloAnthony_G, DwightHoward_G, ChrisBosh_G, LeBronJames_G, ChrisPaul_G, DerrickRose_G, DwayneWade_G, KevinDurant_G)
colnames(Games) <- Seasons
rownames(Games) <- Players

#Minutes Played
KobeBryant_MP <- c(3277,3140,3192,2960,2835,2779,2232,3013,177,1207)
JoeJohnson_MP <- c(3340,2359,3343,3124,2886,2554,2127,2642,2575,2791)
LeBronJames_MP <- c(3361,3190,3027,3054,2966,3063,2326,2877,2902,2493)
CarmeloAnthony_MP <- c(2941,2486,2806,2277,2634,2751,1876,2482,2982,1428)
DwightHoward_MP <- c(3021,3023,3088,2821,2843,2935,2070,2722,2396,1223)
ChrisBosh_MP <- c(2751,2658,2425,2928,2526,2795,2007,2454,2531,1556)
ChrisPaul_MP <- c(2808,2353,3006,3002,1712,2880,2181,2335,2171,2857)
KevinDurant_MP <- c(1255,1255,2768,2885,3239,3038,2546,3119,3122,913)
DerrickRose_MP <- c(1168,1168,1168,3000,2871,3026,1375,0,311,1530)
DwayneWade_MP <- c(2892,1931,1954,3048,2792,2823,1625,2391,1775,1971)
#Matrix
MinutesPlayed <- rbind(KobeBryant_MP, JoeJohnson_MP, LeBronJames_MP, CarmeloAnthony_MP, DwightHoward_MP, ChrisBosh_MP, ChrisPaul_MP, KevinDurant_MP, DerrickRose_MP, DwayneWade_MP)
rm(KobeBryant_MP, JoeJohnson_MP, CarmeloAnthony_MP, DwightHoward_MP, ChrisBosh_MP, LeBronJames_MP, ChrisPaul_MP, DerrickRose_MP, DwayneWade_MP, KevinDurant_MP)
colnames(MinutesPlayed) <- Seasons
rownames(MinutesPlayed) <- Players

#Field Goals
KobeBryant_FG <- c(978,813,775,800,716,740,574,738,31,266)
JoeJohnson_FG <- c(632,536,647,620,635,514,423,445,462,446)
LeBronJames_FG <- c(875,772,794,789,768,758,621,765,767,624)
CarmeloAnthony_FG <- c(756,691,728,535,688,684,441,669,743,358)
DwightHoward_FG <- c(468,526,583,560,510,619,416,470,473,251)
ChrisBosh_FG <- c(549,543,507,615,600,524,393,485,492,343)
ChrisPaul_FG <- c(407,381,630,631,314,430,425,412,406,568)
KevinDurant_FG <- c(306,306,587,661,794,711,643,731,849,238)
DerrickRose_FG <- c(208,208,208,574,672,711,302,0,58,338)
DwayneWade_FG <- c(699,472,439,854,719,692,416,569,415,509)
#Matrix
FieldGoals <- rbind(KobeBryant_FG, JoeJohnson_FG, LeBronJames_FG, CarmeloAnthony_FG, DwightHoward_FG, ChrisBosh_FG, ChrisPaul_FG, KevinDurant_FG, DerrickRose_FG, DwayneWade_FG)
rm(KobeBryant_FG, JoeJohnson_FG, LeBronJames_FG, CarmeloAnthony_FG, DwightHoward_FG, ChrisBosh_FG, ChrisPaul_FG, KevinDurant_FG, DerrickRose_FG, DwayneWade_FG)
colnames(FieldGoals) <- Seasons
rownames(FieldGoals) <- Players

#Field Goal Attempts
KobeBryant_FGA <- c(2173,1757,1690,1712,1569,1639,1336,1595,73,713)
JoeJohnson_FGA <- c(1395,1139,1497,1420,1386,1161,931,1052,1018,1025)
LeBronJames_FGA <- c(1823,1621,1642,1613,1528,1485,1169,1354,1353,1279)
CarmeloAnthony_FGA <- c(1572,1453,1481,1207,1502,1503,1025,1489,1643,806)
DwightHoward_FGA <- c(881,873,974,979,834,1044,726,813,800,423)
ChrisBosh_FGA <- c(1087,1094,1027,1263,1158,1056,807,907,953,745)
ChrisPaul_FGA <- c(947,871,1291,1255,637,928,890,856,870,1170)
KevinDurant_FGA <- c(647,647,1366,1390,1668,1538,1297,1433,1688,467)
DerrickRose_FGA <- c(436,436,436,1208,1373,1597,695,0,164,835)
DwayneWade_FGA <- c(1413,962,937,1739,1511,1384,837,1093,761,1084)
#Matrix
FieldGoalAttempts <- rbind(KobeBryant_FGA, JoeJohnson_FGA, LeBronJames_FGA, CarmeloAnthony_FGA, DwightHoward_FGA, ChrisBosh_FGA, ChrisPaul_FGA, KevinDurant_FGA, DerrickRose_FGA, DwayneWade_FGA)
rm(KobeBryant_FGA, JoeJohnson_FGA, LeBronJames_FGA, CarmeloAnthony_FGA, DwightHoward_FGA, ChrisBosh_FGA, ChrisPaul_FGA, KevinDurant_FGA, DerrickRose_FGA, DwayneWade_FGA)
colnames(FieldGoalAttempts) <- Seasons
rownames(FieldGoalAttempts) <- Players

#Points
KobeBryant_PTS <- c(2832,2430,2323,2201,1970,2078,1616,2133,83,782)
JoeJohnson_PTS <- c(1653,1426,1779,1688,1619,1312,1129,1170,1245,1154)
LeBronJames_PTS <- c(2478,2132,2250,2304,2258,2111,1683,2036,2089,1743)
CarmeloAnthony_PTS <- c(2122,1881,1978,1504,1943,1970,1245,1920,2112,966)
DwightHoward_PTS <- c(1292,1443,1695,1624,1503,1784,1113,1296,1297,646)
ChrisBosh_PTS <- c(1572,1561,1496,1746,1678,1438,1025,1232,1281,928)
ChrisPaul_PTS <- c(1258,1104,1684,1781,841,1268,1189,1186,1185,1564)
KevinDurant_PTS <- c(903,903,1624,1871,2472,2161,1850,2280,2593,686)
DerrickRose_PTS <- c(597,597,597,1361,1619,2026,852,0,159,904)
DwayneWade_PTS <- c(2040,1397,1254,2386,2045,1941,1082,1463,1028,1331)
#Matrix
Points <- rbind(KobeBryant_PTS, JoeJohnson_PTS, LeBronJames_PTS, CarmeloAnthony_PTS, DwightHoward_PTS, ChrisBosh_PTS, ChrisPaul_PTS, KevinDurant_PTS, DerrickRose_PTS, DwayneWade_PTS)
rm(KobeBryant_PTS, JoeJohnson_PTS, LeBronJames_PTS, CarmeloAnthony_PTS, DwightHoward_PTS, ChrisBosh_PTS, ChrisPaul_PTS, KevinDurant_PTS, DerrickRose_PTS, DwayneWade_PTS)
colnames(Points) <- Seasons
rownames(Points) <- Players
# SubSets
vlr<-c("a","e","i","o","u")
vlr
vlr[1]
vlr[c(1,4)]
vlr[c(2,4,5)]
vlr[1:4]
vlr[c(1:3,5)]
vlr[c(1:2,4)]
vlr[c(1:3,2)]
vlr[c(1:3,2,2)]
vlr[c(1:3,3:5)]
Games
#Games[1]
#Games[1,4]
#Games[1:3,8:10]
Games[1:3,7:10]
is.matrix(Games[1:3,7:10])
is.vector(Games[1:3,7:10])
Games[c(1,3,5)]
Games
Games[c(1,2),]
Games[,c(1,2)]
Games
Games[c(1,10),]
Games[,c('2005','2008')]
Games[,c("2013","2009")]
Games
G1<-Games[c(1,8,9),c(4,5,6,7)]
is.matrix(G1)
Games[1,,drop=FALSE]
is.matrix(Games[1,])

11 matplot function in r language telugu

-------------------------------------------
#Dear Student,
#
#Welcome to the world of Basketball Data!
#I'm sure you will enjoy this section of the R Programming course.
#
#Instructions for this dataset:
# Simply select ALL the lines in this script by pressing
# CTRL+A on Windows or CMND+A on a Mac and execute them
# Once you have executed the commands the following objects
# will be created:
# Matrices:
# - FieldGoalAttempts
# - FieldGoals
# - Games
# - MinutesPlayed
# - Salary
# Vectors:
# - Players
# - Seasons
#We will go understand these inside the course.
#
#Sincerely,
#Kirill Eremenko
#www.superdatascience.com

#Copyright: These datasets were prepared using publicly available data.
#           However, theses scripts are subject to Copyright Laws.
#           If you wish to use these R scripts outside of the R Programming Course
#           by Kirill Eremenko, you may do so by referencing www.superdatascience.com in your work.

#Comments:
#Seasons are labeled based on the first year in the season
#E.g. the 2012-2013 season is preseneted as simply 2012

#Notes and Corrections to the data:
#Kevin Durant: 2006 - College Data Used
#Kevin Durant: 2005 - Proxied With 2006 Data
#Derrick Rose: 2012 - Did Not Play
#Derrick Rose: 2007 - College Data Used
#Derrick Rose: 2006 - Proxied With 2007 Data
#Derrick Rose: 2005 - Proxied With 2007 Data

#Seasons
Seasons <- c("2005","2006","2007","2008","2009","2010","2011","2012","2013","2014")

#Players
Players <- c("Ramesh","Venkat","Prasad","Lakshman","Vijay","Praveen","Mohan","Anji","Tinku","Ambani")

#Salaries
KobeBryant_Salary <- c(15946875,17718750,19490625,21262500,23034375,24806250,25244493,27849149,30453805,23500000)
JoeJohnson_Salary <- c(12000000,12744189,13488377,14232567,14976754,16324500,18038573,19752645,21466718,23180790)
LeBronJames_Salary <- c(4621800,5828090,13041250,14410581,15779912,14500000,16022500,17545000,19067500,20644400)
CarmeloAnthony_Salary <- c(3713640,4694041,13041250,14410581,15779912,17149243,18518574,19450000,22407474,22458000)
DwightHoward_Salary <- c(4493160,4806720,6061274,13758000,15202590,16647180,18091770,19536360,20513178,21436271)
ChrisBosh_Salary <- c(3348000,4235220,12455000,14410581,15779912,14500000,16022500,17545000,19067500,20644400)
ChrisPaul_Salary <- c(3144240,3380160,3615960,4574189,13520500,14940153,16359805,17779458,18668431,20068563)
KevinDurant_Salary <- c(0,0,4171200,4484040,4796880,6053663,15506632,16669630,17832627,18995624)
DerrickRose_Salary <- c(0,0,0,4822800,5184480,5546160,6993708,16402500,17632688,18862875)
DwayneWade_Salary <- c(3031920,3841443,13041250,14410581,15779912,14200000,15691000,17182000,18673000,15000000)
#Matrix
Salary <- rbind(KobeBryant_Salary, JoeJohnson_Salary, LeBronJames_Salary, CarmeloAnthony_Salary, DwightHoward_Salary, ChrisBosh_Salary, ChrisPaul_Salary, KevinDurant_Salary, DerrickRose_Salary, DwayneWade_Salary)
rm(KobeBryant_Salary, JoeJohnson_Salary, CarmeloAnthony_Salary, DwightHoward_Salary, ChrisBosh_Salary, LeBronJames_Salary, ChrisPaul_Salary, DerrickRose_Salary, DwayneWade_Salary, KevinDurant_Salary)
colnames(Salary) <- Seasons
rownames(Salary) <- Players

#Games
KobeBryant_G <- c(80,77,82,82,73,82,58,78,6,35)
JoeJohnson_G <- c(82,57,82,79,76,72,60,72,79,80)
LeBronJames_G <- c(79,78,75,81,76,79,62,76,77,69)
CarmeloAnthony_G <- c(80,65,77,66,69,77,55,67,77,40)
DwightHoward_G <- c(82,82,82,79,82,78,54,76,71,41)
ChrisBosh_G <- c(70,69,67,77,70,77,57,74,79,44)
ChrisPaul_G <- c(78,64,80,78,45,80,60,70,62,82)
KevinDurant_G <- c(35,35,80,74,82,78,66,81,81,27)
DerrickRose_G <- c(40,40,40,81,78,81,39,0,10,51)
DwayneWade_G <- c(75,51,51,79,77,76,49,69,54,62)
#Matrix
Games <- rbind(KobeBryant_G, JoeJohnson_G, LeBronJames_G, CarmeloAnthony_G, DwightHoward_G, ChrisBosh_G, ChrisPaul_G, KevinDurant_G, DerrickRose_G, DwayneWade_G)
rm(KobeBryant_G, JoeJohnson_G, CarmeloAnthony_G, DwightHoward_G, ChrisBosh_G, LeBronJames_G, ChrisPaul_G, DerrickRose_G, DwayneWade_G, KevinDurant_G)
colnames(Games) <- Seasons
rownames(Games) <- Players

#Minutes Played
KobeBryant_MP <- c(3277,3140,3192,2960,2835,2779,2232,3013,177,1207)
JoeJohnson_MP <- c(3340,2359,3343,3124,2886,2554,2127,2642,2575,2791)
LeBronJames_MP <- c(3361,3190,3027,3054,2966,3063,2326,2877,2902,2493)
CarmeloAnthony_MP <- c(2941,2486,2806,2277,2634,2751,1876,2482,2982,1428)
DwightHoward_MP <- c(3021,3023,3088,2821,2843,2935,2070,2722,2396,1223)
ChrisBosh_MP <- c(2751,2658,2425,2928,2526,2795,2007,2454,2531,1556)
ChrisPaul_MP <- c(2808,2353,3006,3002,1712,2880,2181,2335,2171,2857)
KevinDurant_MP <- c(1255,1255,2768,2885,3239,3038,2546,3119,3122,913)
DerrickRose_MP <- c(1168,1168,1168,3000,2871,3026,1375,0,311,1530)
DwayneWade_MP <- c(2892,1931,1954,3048,2792,2823,1625,2391,1775,1971)
#Matrix
MinutesPlayed <- rbind(KobeBryant_MP, JoeJohnson_MP, LeBronJames_MP, CarmeloAnthony_MP, DwightHoward_MP, ChrisBosh_MP, ChrisPaul_MP, KevinDurant_MP, DerrickRose_MP, DwayneWade_MP)
rm(KobeBryant_MP, JoeJohnson_MP, CarmeloAnthony_MP, DwightHoward_MP, ChrisBosh_MP, LeBronJames_MP, ChrisPaul_MP, DerrickRose_MP, DwayneWade_MP, KevinDurant_MP)
colnames(MinutesPlayed) <- Seasons
rownames(MinutesPlayed) <- Players

#Field Goals
KobeBryant_FG <- c(978,813,775,800,716,740,574,738,31,266)
JoeJohnson_FG <- c(632,536,647,620,635,514,423,445,462,446)
LeBronJames_FG <- c(875,772,794,789,768,758,621,765,767,624)
CarmeloAnthony_FG <- c(756,691,728,535,688,684,441,669,743,358)
DwightHoward_FG <- c(468,526,583,560,510,619,416,470,473,251)
ChrisBosh_FG <- c(549,543,507,615,600,524,393,485,492,343)
ChrisPaul_FG <- c(407,381,630,631,314,430,425,412,406,568)
KevinDurant_FG <- c(306,306,587,661,794,711,643,731,849,238)
DerrickRose_FG <- c(208,208,208,574,672,711,302,0,58,338)
DwayneWade_FG <- c(699,472,439,854,719,692,416,569,415,509)
#Matrix
FieldGoals <- rbind(KobeBryant_FG, JoeJohnson_FG, LeBronJames_FG, CarmeloAnthony_FG, DwightHoward_FG, ChrisBosh_FG, ChrisPaul_FG, KevinDurant_FG, DerrickRose_FG, DwayneWade_FG)
rm(KobeBryant_FG, JoeJohnson_FG, LeBronJames_FG, CarmeloAnthony_FG, DwightHoward_FG, ChrisBosh_FG, ChrisPaul_FG, KevinDurant_FG, DerrickRose_FG, DwayneWade_FG)
colnames(FieldGoals) <- Seasons
rownames(FieldGoals) <- Players

#Field Goal Attempts
KobeBryant_FGA <- c(2173,1757,1690,1712,1569,1639,1336,1595,73,713)
JoeJohnson_FGA <- c(1395,1139,1497,1420,1386,1161,931,1052,1018,1025)
LeBronJames_FGA <- c(1823,1621,1642,1613,1528,1485,1169,1354,1353,1279)
CarmeloAnthony_FGA <- c(1572,1453,1481,1207,1502,1503,1025,1489,1643,806)
DwightHoward_FGA <- c(881,873,974,979,834,1044,726,813,800,423)
ChrisBosh_FGA <- c(1087,1094,1027,1263,1158,1056,807,907,953,745)
ChrisPaul_FGA <- c(947,871,1291,1255,637,928,890,856,870,1170)
KevinDurant_FGA <- c(647,647,1366,1390,1668,1538,1297,1433,1688,467)
DerrickRose_FGA <- c(436,436,436,1208,1373,1597,695,0,164,835)
DwayneWade_FGA <- c(1413,962,937,1739,1511,1384,837,1093,761,1084)
#Matrix
FieldGoalAttempts <- rbind(KobeBryant_FGA, JoeJohnson_FGA, LeBronJames_FGA, CarmeloAnthony_FGA, DwightHoward_FGA, ChrisBosh_FGA, ChrisPaul_FGA, KevinDurant_FGA, DerrickRose_FGA, DwayneWade_FGA)
rm(KobeBryant_FGA, JoeJohnson_FGA, LeBronJames_FGA, CarmeloAnthony_FGA, DwightHoward_FGA, ChrisBosh_FGA, ChrisPaul_FGA, KevinDurant_FGA, DerrickRose_FGA, DwayneWade_FGA)
colnames(FieldGoalAttempts) <- Seasons
rownames(FieldGoalAttempts) <- Players

#Points
KobeBryant_PTS <- c(2832,2430,2323,2201,1970,2078,1616,2133,83,782)
JoeJohnson_PTS <- c(1653,1426,1779,1688,1619,1312,1129,1170,1245,1154)
LeBronJames_PTS <- c(2478,2132,2250,2304,2258,2111,1683,2036,2089,1743)
CarmeloAnthony_PTS <- c(2122,1881,1978,1504,1943,1970,1245,1920,2112,966)
DwightHoward_PTS <- c(1292,1443,1695,1624,1503,1784,1113,1296,1297,646)
ChrisBosh_PTS <- c(1572,1561,1496,1746,1678,1438,1025,1232,1281,928)
ChrisPaul_PTS <- c(1258,1104,1684,1781,841,1268,1189,1186,1185,1564)
KevinDurant_PTS <- c(903,903,1624,1871,2472,2161,1850,2280,2593,686)
DerrickRose_PTS <- c(597,597,597,1361,1619,2026,852,0,159,904)
DwayneWade_PTS <- c(2040,1397,1254,2386,2045,1941,1082,1463,1028,1331)
#Matrix
Points <- rbind(KobeBryant_PTS, JoeJohnson_PTS, LeBronJames_PTS, CarmeloAnthony_PTS, DwightHoward_PTS, ChrisBosh_PTS, ChrisPaul_PTS, KevinDurant_PTS, DerrickRose_PTS, DwayneWade_PTS)
rm(KobeBryant_PTS, JoeJohnson_PTS, LeBronJames_PTS, CarmeloAnthony_PTS, DwightHoward_PTS, ChrisBosh_PTS, ChrisPaul_PTS, KevinDurant_PTS, DerrickRose_PTS, DwayneWade_PTS)
colnames(Points) <- Seasons
rownames(Points) <- Players
FieldGoals
t(FieldGoals)
?matplot
matplot(t(FieldGoals))
#matplot(FieldGoals)
FieldGoals
#type
matplot(t(FieldGoals),type = "l")
matplot(t(FieldGoals),type = "b")
matplot(t(FieldGoals),type = "p")
matplot(t(FieldGoals),type = "h")
matplot(t(FieldGoals),type = "b",pch = 5:20)
matplot(t(FieldGoals),type = "b",pch = 15:20)
matplot(t(FieldGoals),type = "l",pch = 18:20,col = c(1:10,6))
#?legend()
#legend("bottomleft",legend = Players)
legend("bottomleft",inset=.01,legend = Players,pch = 18:20,col = c(1:10,6),horiz = FALSE   )

10 Naming dimensions for vectors and matrices in R language Telugu

------------------------------
a<- 1:4
a
a[3]
?names(a)
names(a)<-c('my',"r","vlr","s")
names(a)
a
a[3]
a["vlr"]
a
names(a)<- NULL
a
b<-1:12
b
bm<-matrix(b,3,4)
bm
cn<-rep(c("ramesh","vlr","training"),each=4)
mc<-matrix(cn,3,4)
mc
names(mc)<- NULL
rownames(mc)<-c("a","b","c")
colnames(mc)<-c("d","e","f","g")
mc
rownames(mc)<- NULL
colnames(mc)<- NULL
mc
rownames(mc)<-c("a","b","c")
mc["c","g"]
#Dear Student,
#
#Welcome to the world of Basketball Data!
#I'm sure you will enjoy this section of the R Programming course.
#
#Instructions for this dataset:
# Simply select ALL the lines in this script by pressing
# CTRL+A on Windows or CMND+A on a Mac and execute them
# Once you have executed the commands the following objects
# will be created:
# Matrices:
# - FieldGoalAttempts
# - FieldGoals
# - Games
# - MinutesPlayed
# - Salary
# Vectors:
# - Players
# - Seasons
#We will go understand these inside the course.
#
#Sincerely,
#Kirill Eremenko
#www.superdatascience.com

#Copyright: These datasets were prepared using publicly available data.
#           However, theses scripts are subject to Copyright Laws.
#           If you wish to use these R scripts outside of the R Programming Course
#           by Kirill Eremenko, you may do so by referencing www.superdatascience.com in your work.

#Comments:
#Seasons are labeled based on the first year in the season
#E.g. the 2012-2013 season is preseneted as simply 2012

#Notes and Corrections to the data:
#Kevin Durant: 2006 - College Data Used
#Kevin Durant: 2005 - Proxied With 2006 Data
#Derrick Rose: 2012 - Did Not Play
#Derrick Rose: 2007 - College Data Used
#Derrick Rose: 2006 - Proxied With 2007 Data
#Derrick Rose: 2005 - Proxied With 2007 Data

#Seasons
Seasons <- c("2005","2006","2007","2008","2009","2010","2011","2012","2013","2014")

#Players
Players <- c("KobeBryant","JoeJohnson","LeBronJames","CarmeloAnthony","DwightHoward","ChrisBosh","ChrisPaul","KevinDurant","DerrickRose","DwayneWade")

#Salaries
KobeBryant_Salary <- c(15946875,17718750,19490625,21262500,23034375,24806250,25244493,27849149,30453805,23500000)
JoeJohnson_Salary <- c(12000000,12744189,13488377,14232567,14976754,16324500,18038573,19752645,21466718,23180790)
LeBronJames_Salary <- c(4621800,5828090,13041250,14410581,15779912,14500000,16022500,17545000,19067500,20644400)
CarmeloAnthony_Salary <- c(3713640,4694041,13041250,14410581,15779912,17149243,18518574,19450000,22407474,22458000)
DwightHoward_Salary <- c(4493160,4806720,6061274,13758000,15202590,16647180,18091770,19536360,20513178,21436271)
ChrisBosh_Salary <- c(3348000,4235220,12455000,14410581,15779912,14500000,16022500,17545000,19067500,20644400)
ChrisPaul_Salary <- c(3144240,3380160,3615960,4574189,13520500,14940153,16359805,17779458,18668431,20068563)
KevinDurant_Salary <- c(0,0,4171200,4484040,4796880,6053663,15506632,16669630,17832627,18995624)
DerrickRose_Salary <- c(0,0,0,4822800,5184480,5546160,6993708,16402500,17632688,18862875)
DwayneWade_Salary <- c(3031920,3841443,13041250,14410581,15779912,14200000,15691000,17182000,18673000,15000000)
#Matrix
Salary <- rbind(KobeBryant_Salary, JoeJohnson_Salary, LeBronJames_Salary, CarmeloAnthony_Salary, DwightHoward_Salary, ChrisBosh_Salary, ChrisPaul_Salary, KevinDurant_Salary, DerrickRose_Salary, DwayneWade_Salary)
rm(KobeBryant_Salary, JoeJohnson_Salary, CarmeloAnthony_Salary, DwightHoward_Salary, ChrisBosh_Salary, LeBronJames_Salary, ChrisPaul_Salary, DerrickRose_Salary, DwayneWade_Salary, KevinDurant_Salary)
colnames(Salary) <- Seasons
rownames(Salary) <- Players

#Games
KobeBryant_G <- c(80,77,82,82,73,82,58,78,6,35)
JoeJohnson_G <- c(82,57,82,79,76,72,60,72,79,80)
LeBronJames_G <- c(79,78,75,81,76,79,62,76,77,69)
CarmeloAnthony_G <- c(80,65,77,66,69,77,55,67,77,40)
DwightHoward_G <- c(82,82,82,79,82,78,54,76,71,41)
ChrisBosh_G <- c(70,69,67,77,70,77,57,74,79,44)
ChrisPaul_G <- c(78,64,80,78,45,80,60,70,62,82)
KevinDurant_G <- c(35,35,80,74,82,78,66,81,81,27)
DerrickRose_G <- c(40,40,40,81,78,81,39,0,10,51)
DwayneWade_G <- c(75,51,51,79,77,76,49,69,54,62)
#Matrix
Games <- rbind(KobeBryant_G, JoeJohnson_G, LeBronJames_G, CarmeloAnthony_G, DwightHoward_G, ChrisBosh_G, ChrisPaul_G, KevinDurant_G, DerrickRose_G, DwayneWade_G)
rm(KobeBryant_G, JoeJohnson_G, CarmeloAnthony_G, DwightHoward_G, ChrisBosh_G, LeBronJames_G, ChrisPaul_G, DerrickRose_G, DwayneWade_G, KevinDurant_G)
colnames(Games) <- Seasons
rownames(Games) <- Players

#Minutes Played
KobeBryant_MP <- c(3277,3140,3192,2960,2835,2779,2232,3013,177,1207)
JoeJohnson_MP <- c(3340,2359,3343,3124,2886,2554,2127,2642,2575,2791)
LeBronJames_MP <- c(3361,3190,3027,3054,2966,3063,2326,2877,2902,2493)
CarmeloAnthony_MP <- c(2941,2486,2806,2277,2634,2751,1876,2482,2982,1428)
DwightHoward_MP <- c(3021,3023,3088,2821,2843,2935,2070,2722,2396,1223)
ChrisBosh_MP <- c(2751,2658,2425,2928,2526,2795,2007,2454,2531,1556)
ChrisPaul_MP <- c(2808,2353,3006,3002,1712,2880,2181,2335,2171,2857)
KevinDurant_MP <- c(1255,1255,2768,2885,3239,3038,2546,3119,3122,913)
DerrickRose_MP <- c(1168,1168,1168,3000,2871,3026,1375,0,311,1530)
DwayneWade_MP <- c(2892,1931,1954,3048,2792,2823,1625,2391,1775,1971)
#Matrix
MinutesPlayed <- rbind(KobeBryant_MP, JoeJohnson_MP, LeBronJames_MP, CarmeloAnthony_MP, DwightHoward_MP, ChrisBosh_MP, ChrisPaul_MP, KevinDurant_MP, DerrickRose_MP, DwayneWade_MP)
rm(KobeBryant_MP, JoeJohnson_MP, CarmeloAnthony_MP, DwightHoward_MP, ChrisBosh_MP, LeBronJames_MP, ChrisPaul_MP, DerrickRose_MP, DwayneWade_MP, KevinDurant_MP)
colnames(MinutesPlayed) <- Seasons
rownames(MinutesPlayed) <- Players

#Field Goals
KobeBryant_FG <- c(978,813,775,800,716,740,574,738,31,266)
JoeJohnson_FG <- c(632,536,647,620,635,514,423,445,462,446)
LeBronJames_FG <- c(875,772,794,789,768,758,621,765,767,624)
CarmeloAnthony_FG <- c(756,691,728,535,688,684,441,669,743,358)
DwightHoward_FG <- c(468,526,583,560,510,619,416,470,473,251)
ChrisBosh_FG <- c(549,543,507,615,600,524,393,485,492,343)
ChrisPaul_FG <- c(407,381,630,631,314,430,425,412,406,568)
KevinDurant_FG <- c(306,306,587,661,794,711,643,731,849,238)
DerrickRose_FG <- c(208,208,208,574,672,711,302,0,58,338)
DwayneWade_FG <- c(699,472,439,854,719,692,416,569,415,509)
#Matrix
FieldGoals <- rbind(KobeBryant_FG, JoeJohnson_FG, LeBronJames_FG, CarmeloAnthony_FG, DwightHoward_FG, ChrisBosh_FG, ChrisPaul_FG, KevinDurant_FG, DerrickRose_FG, DwayneWade_FG)
rm(KobeBryant_FG, JoeJohnson_FG, LeBronJames_FG, CarmeloAnthony_FG, DwightHoward_FG, ChrisBosh_FG, ChrisPaul_FG, KevinDurant_FG, DerrickRose_FG, DwayneWade_FG)
colnames(FieldGoals) <- Seasons
rownames(FieldGoals) <- Players

#Field Goal Attempts
KobeBryant_FGA <- c(2173,1757,1690,1712,1569,1639,1336,1595,73,713)
JoeJohnson_FGA <- c(1395,1139,1497,1420,1386,1161,931,1052,1018,1025)
LeBronJames_FGA <- c(1823,1621,1642,1613,1528,1485,1169,1354,1353,1279)
CarmeloAnthony_FGA <- c(1572,1453,1481,1207,1502,1503,1025,1489,1643,806)
DwightHoward_FGA <- c(881,873,974,979,834,1044,726,813,800,423)
ChrisBosh_FGA <- c(1087,1094,1027,1263,1158,1056,807,907,953,745)
ChrisPaul_FGA <- c(947,871,1291,1255,637,928,890,856,870,1170)
KevinDurant_FGA <- c(647,647,1366,1390,1668,1538,1297,1433,1688,467)
DerrickRose_FGA <- c(436,436,436,1208,1373,1597,695,0,164,835)
DwayneWade_FGA <- c(1413,962,937,1739,1511,1384,837,1093,761,1084)
#Matrix
FieldGoalAttempts <- rbind(KobeBryant_FGA, JoeJohnson_FGA, LeBronJames_FGA, CarmeloAnthony_FGA, DwightHoward_FGA, ChrisBosh_FGA, ChrisPaul_FGA, KevinDurant_FGA, DerrickRose_FGA, DwayneWade_FGA)
rm(KobeBryant_FGA, JoeJohnson_FGA, LeBronJames_FGA, CarmeloAnthony_FGA, DwightHoward_FGA, ChrisBosh_FGA, ChrisPaul_FGA, KevinDurant_FGA, DerrickRose_FGA, DwayneWade_FGA)
colnames(FieldGoalAttempts) <- Seasons
rownames(FieldGoalAttempts) <- Players

#Points
KobeBryant_PTS <- c(2832,2430,2323,2201,1970,2078,1616,2133,83,782)
JoeJohnson_PTS <- c(1653,1426,1779,1688,1619,1312,1129,1170,1245,1154)
LeBronJames_PTS <- c(2478,2132,2250,2304,2258,2111,1683,2036,2089,1743)
CarmeloAnthony_PTS <- c(2122,1881,1978,1504,1943,1970,1245,1920,2112,966)
DwightHoward_PTS <- c(1292,1443,1695,1624,1503,1784,1113,1296,1297,646)
ChrisBosh_PTS <- c(1572,1561,1496,1746,1678,1438,1025,1232,1281,928)
ChrisPaul_PTS <- c(1258,1104,1684,1781,841,1268,1189,1186,1185,1564)
KevinDurant_PTS <- c(903,903,1624,1871,2472,2161,1850,2280,2593,686)
DerrickRose_PTS <- c(597,597,597,1361,1619,2026,852,0,159,904)
DwayneWade_PTS <- c(2040,1397,1254,2386,2045,1941,1082,1463,1028,1331)
#Matrix
Points <- rbind(KobeBryant_PTS, JoeJohnson_PTS, LeBronJames_PTS, CarmeloAnthony_PTS, DwightHoward_PTS, ChrisBosh_PTS, ChrisPaul_PTS, KevinDurant_PTS, DerrickRose_PTS, DwayneWade_PTS)
rm(KobeBryant_PTS, JoeJohnson_PTS, LeBronJames_PTS, CarmeloAnthony_PTS, DwightHoward_PTS, ChrisBosh_PTS, ChrisPaul_PTS, KevinDurant_PTS, DerrickRose_PTS, DwayneWade_PTS)
colnames(Points) <- Seasons
rownames(Points) <- Players
Salary
Points
homany<-round(FieldGoals/Games,1)
homany
rownames(Points)

09 Matrix in R Programming telugu and Sample data Set


---------------------------------
?matrix()
v1<-1:20
v1
mat1<-matrix(data=v1,nrow=4,ncol=5)
mat1
mat1[1,1]
mat1[5,6]
mat1[4,3]
mat1<-matrix(data=v1,nrow=4,ncol=5)
mat2
mat3<-matrix(data=v1,nrow=5,ncol=5)
mat3
v2<-c("r","k","n","c")
mat4<-matrix(data=v2,nrow=2,ncol=2)
mat4
?rbind()
b1<-c("my","name","is venkat")
b2<-C(22,44,66)
b3<-c("vlr","training","Near Jntu")
my.mat<-rbind(b1,b2,b3)
my.mat
my.mat1<-cbind(b1,b2,b3)
my.mat1

08 sample program for analysis R language telugu

----------------------------------------------------------
#Data
revenue <- c(14574.49, 7606.46, 8611.41, 9175.41, 8058.65, 8105.44, 11496.28, 9766.09, 10305.32, 14379.96, 10713.97, 15433.50)
expenses <- c(12051.82, 5695.07, 12319.20, 12089.72, 8658.57, 840.20, 3285.73, 5821.12, 6976.93, 16618.61, 10054.37, 3803.96)
revenue
# profit for each month
profit<-revenue-expenses

# profit after tax for each month (the tax rate is 30%)
tax<-profit*0.3
tax
pat<-profit-tax
pat
# profit margin for each month - equals to profit a after tax divided by revenue
pmem<-round(pat/revenue,2)*100
?round
#pmem1<-round(pmem,2)
pmem


# good months - where the profit after tax was greater than the mean for the year
x<-mean(pat)
x
goodmonths<- pat>x
goodmonths
#bad months - where the profit after tax was less than the mean for the year

badmonths<- pat<x
badmonths
# the best month - where the profit after tax was max for the year
bestmonth<-pat==max(pat)
bestmonth
pat
# the worst month - where the profit after tax was min for the year
worstmonth<-pat==min(pat)
worstmonth
############
revenue1<-(round(revenue/1000,0))
expenses1<-(round(expenses/1000,0))
profit1<-(round(profit/1000,0))
pat1<-(round(pat/1000,0))
revenue1
expenses1
profit1
pat1
pmem
goodmonths
badmonths
bestmonth
worstmonth
m<-rbind(
  revenue1,
  expenses1,
  profit1,
  pat1,
  pmem,
  goodmonths,
  badmonths,
  bestmonth,
  worstmonth
)
m

07 Functions and Packages in R language Telugu

------------------------------------
?c()
?seq()
x<-c(2,5,3,88,99)
seq(to=40,from=1,length.out = 100)
seq(1,30,along.with = x)
?rnorm()
rnorm(10,4,3)
?rep()
rep(2,4)
rep(x,each=3)
install.packages("ggplot2")
?ggplot2
library(ggplot2)
?ggplot2

06 vector operation in R language Telugu | How to do Vector Operations in R Studio

----------------------------------------------------
v1<-c("ramesh","s","r","n","j","t")
v1[6]
v1[7]
v2<-v1[-1]
v1[-3]
v1[1:3]
v1[2:8]
v1[c(1,3,5)]
v1[c(2,4,6)]
v1[c(-2,-4)]
v1[-3:-6]
a1 <- rnorm(20)
a2 <- rnorm(20)
a3<-a1+a2
b1<-c(1,2,3,4)
b2<- c(10,20,30,40)
b3=b1+b2
b4=b1<b2
b5<-c(1,2,3,4,5,6,7,8)
b6 <- b5+b2
b6

05 vectors in r language Telugu | How to Create and Name Vectors in R

-----------------------------------------
z=c(22,44,21,77,99)

z
is.numeric(z)
is.integer(z)
is.double(z)
d=c(22L,44L,21L)
is.numeric(d)
is.integer(d)
v3=c("ramesh","vlr","venkat")
is.character(v3)
v4=c("ramesh",99.8)
seq(1,15,2)
1:15
tr=rep(2,20)
rep(v3,3)
we=rep("vlr training",5)

04 law of large numbers program in R language Telugu | How to work with large numbers in R?

--------------------------------------------
-----------------------------------------
rnorm(10)

#low of large numbers
n <- 1000000
c<-0
for(i in rnorm(n))
{
  if(i>=-1 & i<=1)
  {
    c<-c+1
  }
}
result=c/n
#############

#c <-0
for (i in rnorm(n))
{
  if (i>=-1 & i<=1)
  {
    c=c=c+1
  }
}
result<- c/n

03 for loop and if statement r language | Programming functions in R: For loop and If statements


---------------------------------------
z<-rnorm(1)
#rm(ans)
if(z>1)
{
  ans="big than 1"
}else
{
  ans ="small than1"
}

z<-rnorm(1)
#rm(ans)
if(z>1)
{
  ans="big than 1"
}else if
{
  if (z<1 )
  {
  ans ="small than1"
  }
}
### for loop
for(i in 1:5)
{
  print("hi")

 
}

02 Introduction to While Loop in R Programming Telugu | While Loops in R

-----------------------------------
a <- 10
b <-30
c <- a*b
d <- sqrt(c)
sqrt(100)
name1="vlr Training"
name2="venkat"
fi=paste(name1,name2)
z<-10==20
isTRUE(z)
5>6
!(5>6)
# while loop
while(TRUE)
{print("hi")}
# print 1 t0 10 number
nm2<-1
while(nm2<=10)
{
  print(nm2)
  nm2<-nm2+1
}

01 R language and rstudio installation and variable declaration telugu 01


-------------------------------------
#This is my var
x <- 10
typeof(x)
y <- 20
num1 <- 40L
typeof(num1)
num2=22.45
name="vlr training"
typeof(name)
fomul= 2i+4
typeof(fomul)
pass=FALSE
typeof(pass)
pass=TRue